
www.manaraa.com

Attribute-Based Access Control for Distributed Systems

by

David J. B. Cheperdak

B.Sc., University of Victoria, 2011

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTERS OF SCIENCE

in the Department of Computer Science

c© David J. B. Cheperdak, 2012

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

www.manaraa.com

978-0-499-26384-1

Your file Votre référence

Library and Archives
Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:

ISBN:

Our file Notre référence

978-0-499-26384-1ISBN:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

www.manaraa.com

ii

Attribute-Based Access Control for Distributed Systems

by

David J. B. Cheperdak

B.Sc., University of Victoria, 2011

Supervisory Committee

Dr. Y. Coady, Co-Supervisor

(Department of Computer Science)

Dr. S. Neville, Co-Supervisor

(Department of Electrical and Computer Engineering)

Dr. P. McGeer, Co-Supervisor

(Department of Computer Science)

www.manaraa.com

iii

Supervisory Committee

Dr. Y. Coady, Co-Supervisor

(Department of Computer Science)

Dr. S. Neville, Co-Supervisor

(Department of Electrical and Computer Engineering)

Dr. P. McGeer, Co-Supervisor

(Department of Computer Science)

ABSTRACT

Securing information systems from cyber attacks, malware and internal cyber threats

is a difficult problem. Attacks on authentication and authorization (access control)

is one of the more predominant and potentially rewarding attacks on distributed

architectures. Attribute-Based Access Control (ABAC) is one of the more recent

mechanisms to provide access control capabilities. ABAC combines the strength of

cryptography with semantic expressions and relational assertions. By this composi-

tion, a powerful grammar is devised that can not only define complex and scalable

access control policies, but defend against attacks on the policy itself. This thesis

demonstrates how ABAC can be used as a primary access control solution for enter-

prise and commercial applications.

www.manaraa.com

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Introduction . 1

1.2 Thesis Claims . 2

1.2.1 Importance of Claims . 2

1.3 Outline . 3

1.4 Introduction . 4

1.5 Technology Introduction: Access Control 5

1.6 Authorization . 5

1.6.1 Role-Based . 5

1.6.2 Resource-Based . 6

1.6.3 Claims-Based . 6

1.6.4 Authorization for Cloud Infrastructures 6

1.7 Authentication . 6

1.7.1 Types . 7

1.7.2 Identity Management . 7

1.7.3 Mechanisms . 8

1.7.4 Technology and Mechanisms 8

1.8 Indirect Assertion . 8

1.8.1 Shibboleth . 9

www.manaraa.com

v

1.8.2 OpenID . 9

1.8.3 OAuth . 10

1.9 Direct Assertion . 10

1.9.1 DAC . 10

1.9.2 MAC . 10

1.10 Hybrid Assertion . 11

1.10.1 RBAC . 11

1.10.2 ZBAC . 11

1.10.3 ABAC . 12

1.11 ABAC Introduction . 12

1.11.1 Attribute-Based Access Control 12

1.11.2 RT0 Logic . 13

1.11.3 RT0 Syntax . 13

1.11.4 Credential Chain Discovery 14

1.11.5 Credential Graphs . 14

1.11.6 Search Algorithms . 15

1.11.7 ABAC Overview . 16

2 Case Study 2: ABAC Integration for Open Source Architectures 20

2.1 PlanetLab SFA Introduction . 20

2.1.1 Slice-Federated Architecture 20

2.1.2 Defining Legacy Access Control Mechanism Requirements . . 21

2.2 Legacy Architecture Design . 24

2.2.1 Defining Legacy Access Control Policy Requirements 25

2.3 ABAC Policy . 26

2.3.1 The Transition from Legacy To ABAC Access Control Mecha-

nisms . 28

2.4 ABAC Policy Integration . 31

2.4.1 The Mapping of Capabilities to Resources 31

2.4.2 Inter-Federate Mapping of Roles 33

2.4.3 The Mapping of Roles to Capabilities 33

2.5 Impact . 36

2.5.1 ABAC Policy Scalability and Modularity 37

2.5.2 Reconfigurability Evaluation 37

2.5.3 Extensibility Evaluation . 38

www.manaraa.com

vi

2.6 Conclusion . 40

3 Case Study 2: ABAC Integration for Proprietary Architectures 41

3.1 Introduction . 41

3.2 G2E Introduction . 42

3.2.1 Access Control Architecture 42

3.2.2 Avoiding Licensing Restrictions 43

3.3 G2E Architecture and Design . 44

3.3.1 Inter-Component Communication 51

3.3.2 API . 53

3.4 Formal Client Access Control Specification 53

3.4.1 Policy . 53

3.4.2 Client Access Control Specification 56

3.4.3 Architecture Access Control Specification 64

3.5 Results . 68

3.5.1 Proof of Concept . 69

3.5.2 Performance and Scalability 70

3.5.3 Stakeholder Review . 72

4 Evaluation, Analysis and Conclusions 75

4.1 Claims and Analysis . 75

4.2 Conclusions . 76

Bibliography 78

www.manaraa.com

vii

List of Tables

Table 1.1 Principal Attribute Association. 18

Table 2.1 Modified Modules and Objects. 29

Table 2.2 libabac Python Wrapper . 29

Table 2.3 PlanetLab Manager Attributes 32

Table 2.4 PlanetLab Manager Attributes 33

Table 2.5 PlanetLab Role Attributes . 34

Table 2.6 PlanetLab Attribute Hierarchies 35

Table 2.7 PlanetLab Operation Attributes 35

Table 2.8 Impact: Depth and Breadth of Execution Traces 36

Table 2.9 Reconfigurability: Change in Credential Set Size 37

Table 2.10 Extensibility: Change in Credential Set Size 38

Table 2.11 Extensibility: Change in Credential Set Size 39

Table 3.1 ABAC Server REST API . 54

Table 3.2 ABAC Server REST API . 55

Table 3.3 System Roles (KEY = SR) . 58

Table 3.4 Subscriber Hierarchy (KEY = SS) 59

Table 3.5 Access Class Map (KEY = ACM) 60

Table 3.6 Entity Attributes (KEY = EA) 61

Table 3.7 Country Code (KEY = CC) . 61

Table 3.8 Organization (KEY = ORG) . 61

Table 3.9 Data Layering (KEY = DL) . 62

Table 3.10 Entity Status (KEY = ES) . 62

Table 3.11 Metadata Classification (KEY = MC) 63

Table 3.12 Entity Operations (KEY = EO) 64

Table 3.13 Authentication Proxy (KEY = AP) 65

Table 3.14 ABAC-Server (KEY = ABACS) 65

Table 3.15 G2E Web Application (KEY = G2E-WA) 66

www.manaraa.com

viii

Table 3.16 G2E Java Application Server (KEY = G2E-JAS) 66

Table 3.17 G2E Cache Services (KEY = G2E-CS) 66

Table 3.18 G2E Rasterization Application (KEY = G2E-RA) 67

Table 3.19 G2E Sync Application (KEY = G2E-SA) 67

Table 3.20 G2E Database Application (KEY = G2E-DA) 68

Table 3.21 ABAC Access Control Server Performance 71

Table 3.22 G2E ABAC Survey . 73

www.manaraa.com

ix

List of Figures

Figure 2.1 PlanetLab Access Control Architecture 23

Figure 2.2 PlanetLab ABAC Access Control Architecture 30

Figure 3.1 G2E Access Control Architecture 45

Figure 3.2 G2E ABAC Configuration: Centralized 47

Figure 3.3 G2E ABAC Configuration: Distributed 48

Figure 3.4 G2E ABAC Configuration: Hybrid 49

Figure 3.5 G2E ABAC Query Restriction: Canadian and Subscribers+ . . 69

Figure 3.6 G2E ABAC Query Restriction: Premium and Subscribers . . . 69

www.manaraa.com

Chapter 1

Introduction

1.1 Introduction

Securing information systems from cyber attacks, malware and internal threats is a

difficult problem. Cyber security is a multi-variable function of complexity correlated

to a given information system. As complexity of a given information system increases,

so can the distribution of potential attack vectors. In this respect, cyber security can

be modeled as a mapping of an attack vector on a given resource to zero or more

defensive mechanisms for that resource. An attack vector denotes the attack path of

an entity A may take to gain access to a given resource.

Many different approaches have arisen to deal with various attack vectors within

information systems. Such approaches include firewalls, intrusion detection systems,

intrusion prevention systems, virus scanners, deep packet inspection techniques, ac-

cess control mechanisms, VPN and real time monitoring. Each approach emphasizes a

particular range and type of potential attack vectors. Additionally, the architecture,

technology and requirements governing an information system dictates or imposes

stringent requirements on a given cyber defense approach. Specifically, securing indi-

vidual components defines a significantly different problem than a homogenous Cloud

Computing architecture. In particular, Cloud Computing architectures, in their di-

verse forms, derive several unique properties. These include but are not limited to,

multi-tenancy, dynamic tenancy, multiple operational domains, shared infrastructure

and policy-defined federation requirements. Such properties require access control

mechanisms that similarly facilitate these properties. This thesis focuses on a partic-

ular element of cyber security. Access control mechanisms for distributed architec-

www.manaraa.com

2

tures. In particular, this thesis demonstrates that an access control technology known

as Attribute-Based Access Control (ABAC) can be used as a primary means for au-

thorization and authentication in corporate and enterprise distributed architectures.

This thesis contains two case studies that demonstrate ABACs capacity to subsume

such distributed architectures authorization and authentication requirements. The

first case study analyzes the capacity of ABAC to subsume the role of legacy access

control mechanisms in a legacy distributed system. The second case study analyzes

ABACs capacity to fully encompass a modern distributed architectures formal access

control requirements. It should be noted that when subsuming legacy access control

mechanisms, there is a distinct relationship between legacy access control require-

ments and those of a modern distributed architecture. This difference is emphasized

by the technology, iterative architecture and scalability requirements of a modern

distributed system.

1.2 Thesis Claims

I make one claim which my thesis validates:

Claim: This thesis demonstrates that Attribute-Based Access Control (ABAC)

can be used as a primary authorization and authentication mechanism (access control)

for legacy or modern enterprise systems.

The Claim, as detailed in this thesis, will be demonstrated empirically and qual-

itatively through analysis of two case studies. The first case study investigates how

ABAC can be integrated into a open source legacy architecture. The second case

study investigates how ABAC can be integrated into a proprietary modern architec-

ture.

1.2.1 Importance of Claims

Access control is a fundamental aspect of any given information system. Informa-

tion is considered an asset whether it be medical, financial, personal or some other

form of valuable data. However, authentication and authorization (access control)

of an information system in most cases has either serious limitations or weaknesses.

Attribute-Based Access Control (ABAC) can overcome many of these weaknesses by

reducing potential attack vectors down to one. This attack vector is the the manage-

www.manaraa.com

3

ment and protection of X.509 certificates. Additional capabilities inherent to ABAC

include the capability to factorize policy from mechanism and policy from imple-

mentation. Factorization ensures that policy remains scalable and manageable as a

computer architecture scales. ABAC also has capacity to facilitate federation. Fed-

eration is the mechanism by which multiple exclusive infrastructures or systems may

interact or share data in a secure, trusted way. With the growth of Big Data, the

need for a system to facilitate management of large collections of data while maintain-

ing fine grain access control is essential. These capacities among others are explored

throughout this thesis.

The Claim as noted in this thesis implies:

1. Distributed infrastructures can:

• federate with other infrastructures;

• enable policy to scale as the infrastructure scales;

• provide fine grain access control policies;

• decouple access control policy from implementation;

• decouple policy from infrastructure;

• factorize policy to infrastructure.

Thus, ABAC can ultimately provide access control capabilities that model the Cloud

Computing paradigm. Other access control mechanisms can subsume a similar set of

capabilities as ABAC but have a different attack surface.

1.3 Outline

This section provides a map of the thesis as follows:

Chapter 1 contains a review of Access Control technologies and fundamental prin-

ciples inherent in authorization and authentication.

Chapter 2 contains the first case study that investigates the feasibility of integrating

ABAC into a legacy architecture.

Chapter 3 contains the second case study that investigates the feasibility of inte-

grating ABAC into a modern architecture.

www.manaraa.com

4

Chapter 4 provides high level analysis of the case studies conducted in this thesis

and concluding inferences.

1.4 Introduction

This thesis is divided into four chapters. These chapters are as follows. Chapter

1 provides a comprehensive review of application, principle and technology behind

access control systems. Chapter 1 is divided into several primary sections. The first

major section provides an overview of authorization. The second section provides an

overview of authentication and technologies that provide authentication capabilities.

The third section provides an overview of technologies that provide both authorization

and authentication capabilities. The fourth and final section provides a detailed

introduction to Attribute-Based Access Control (ABAC) including technology and

grammar components.

Chapter 2 provides the first case study that investigates the feasibility of integrat-

ing ABAC into a legacy architecture. This chapter is divided into several sections.

The first section provides an introduction to the legacy architecture PlanetLab. The

second section details the analysis of the legacy architecture. The third section de-

tails the approach to integrate ABAC into this legacy architecture. The fourth section

details the evolution of legacy policy into an ABAC grammar. The fifth and final

section details quantitative and qualitative results.

Chapter 3 provides the second case study that investigates the feasibility of in-

tegrating ABAC into a modern architecture. This chapter is divided into several

sections. The first section details the core objectives and requirements detailed by

the modern architecture. The second section details the modern architecture under

study. The third section details the approach and design of integrating ABAC into a

modern architecture. The fourth section details the evolution and design of an ABAC

policy. The fifth and final section details quantitative and qualitative results.

Chapter 4 provides a high level overview of the case studies explored in this thesis.

Additionally, contrast between approaches for these two case studies are evaluated

with respect to the claims defined within this thesis. Additionally, conclusions to the

findings in these studies is detailed.

www.manaraa.com

5

1.5 Technology Introduction: Access Control

Access Control is a defensive mechanism against one type of attack vector. This

attack vector encompasses the set of actions and operations required to gain access to

a information system resource that an entity does not or should not have access to.

It is important to note that actions and operations that result in erroneous access to

an information system’s resources are not necessarily malicious. It is possible that,

by fault in a system, access can be granted to an invalid non-malicious user. This

can happen if an access control policy is inappropriately defined or a failure occurs.

However, appropriate access control design measures can be taken to eliminate such

occurrences.

Access Control defines a mechanism and policy that controls how and which en-

tities may access a particular resource. It should be noted that entities can refer to

both human clients and other information systems. Access Control can incorporate

different mechanisms to facilitate assertion of access to a particular resource. Gener-

ally these mechanisms incorporate the notion of Credentials to denote a key to unlock

a gate to a particular resource. Access Control can be partitioned into two primary

functions, Authorization and Authentication.

1.6 Authorization

Authorization is the process and function of delegating resource access rights to en-

tities [36]. It also is the process by which an access control policy for a particular

resource is created. In most cases a policy continues to evolve as the given informa-

tion system evolves. Thus the structure of an access control policy directly correlates

to its manageability. A policy can take on many structures and be defined as several

distinct forms. These forms include but are not limited to Role Based, Resource

Based and Claims Based policy definitions.

1.6.1 Role-Based

Role-Based policies are generally concerned with the delegation of a role to a given

entity within the Policy [11]. This pairing of role and entity defines an authorization

entity within the system. In the general case, a role is defined as a bundle of capa-

www.manaraa.com

6

bilities. This aggregation of capabilities simplifies delegation of rights to a particular

entity.

1.6.2 Resource-Based

Resource-Based policies associate entity credentials directly with a given resource [26].

By this policy type an Access Control List (ACL) can be defined for each resource

which denotes explicitly which may access the resource and in which way. This policy

type differs from Role Based policies as each user is explicitly given access instead of

delegating access to a Role.

1.6.3 Claims-Based

Claims-Based policies add additional layers of abstraction to policy layers through

intermediate steps [27]. An example of policy layers can be elevating privileges in a

Linux operating system through sudo before authenticating against a database and

its given ACL.

1.6.4 Authorization for Cloud Infrastructures

These three policy types are not always ideal for a given system. This thesis will

demonstrate that a hybrid approach of all three types is necessary to construct a

policy for a large scale distributed system using ABAC technologies. Authorization

and policy design is only one factor of Access Control. The second aspect of Access

Control is Authentication.

1.7 Authentication

Authentication is the means by which an entity confirms a truth or fact. This fact or

truth is often correlated to proof of identity which is essential to asserting Authoriza-

tion. As a side note, a common attack vector on Access Control systems is forgery

or a related attack on the identity of a given trusted entity within a system. Thus

many different Authentication systems exist, each designed to mitigate attack types

based on identity.

www.manaraa.com

7

1.7.1 Types

There are three primary types of Authentication. The first type of Authentication is

identity through proof. The second type of Authentication is attribute comparison.

The third type is third party assertion. Identity through proof is a mechanism by

which an entity presents both a request for access and a proof of access. Such a

mechanism can be expressed as the case when entity X desires to access the resource

OPERATION at entity Y. Entity X provides Y a token that asserts trust of X and

permission to access resource OPERATION. In the case of the attribute type compar-

ison, the entity Y that asserts access control over the resource OPERATION requires

comparison against expected attributes of a requesting entity X. In this case, at-

tributes such as IP Address, MAC address, Domain Name can be evaluated to assert

a proof that entity X has access to resource OPERATION controlled by Y. The third

type of authentication, third party assertion, specifies that a mutually trusted third

party is delegated the privilege to assert truth of identity on behalf of both entities

X and Y. This type of authentication is particularly important in web applications

and federated access control. One example of this situation is when two web services

need to share data but do not wish to reveal the nature of their Authorization struc-

tures or given policies. In this context, the trusted third party acts as a negotiator or

intermediary. Another aspect of Authentication, which is independent of the means

of which trust of identity is asserted, is Identity Management.

1.7.2 Identity Management

Identity Management or (IdM) describes the capacity and mechanism to manage the

identities of entities within a given system [29]. Identity Management is defined by

organizational policies for one or more distributed systems. IdM is critical to ensuring

Access Control mechanisms are effective at protecting resources from unauthorized

access. For example, if an human user of the system is demoted within an organi-

zation, a corresponding change to the Identity within the system should also occur

to reflect a new organizational role. Similarly, in the event that an employee leaves

an organization, the account of that employee and the corresponding identity should

be revoked from the system. Failing to perform the appropriate change in Identity

within the system can expose a new attack vector. This thesis does not address the

issue of Identity Management with respect to ABAC, as this scope far exceeds the

intent to demonstrate that ABAC can act as a primary mechanism of Access Control

www.manaraa.com

8

in distributed systems for enterprises and corporations. As IdM is largely dependent

on the practices and internal policies of an organization, the variants of potential

systems are unbounded. This thesis does identify fundamental principles concerned

with IdM with respect to ABAC credentials for future IdM implementations.

1.7.3 Mechanisms

Authorization policies and Authentication mechanisms are realized in implementation

as Access Control mechanisms. Mechanisms are functional systems that provide the

means that Authorization and Authentication can be bound to resources in a given

system. Mechanisms encompass the software that performs assertions, provide the

means of communicating and implement analytical processes on access control poli-

cies. These mechanisms harness a wide variety of technologies and are implemented

into different mechanisms.

1.7.4 Technology and Mechanisms

As described previously, there exists a wide range of attack vectors on information

systems. There are also a wide range of attack vectors on Access Control systems.

Many different approaches have been taken to eliminate potential attack vectors while

ensuring capacity to provide an effective Access Control solution. Incorporating the

previous notions of Authorization and Authentication, three primary classes of Ac-

cess Control mechanisms are defined. These classes are Indirect Assertion, Direct

Assertion and Hybrid Assertion. Prominent mechanisms that fall into these classes

are discussed in the next section.

1.8 Indirect Assertion

Web services are a unique case as they emphasize requirements for simple, minimal-

istic, access delegation across user level facilities. Access Control systems such as

OAuth and Shibboleth are mechanisms that have evolved to satisfy these require-

ments. However, to define complex fine grain complex policies, alternatives must be

considered.

www.manaraa.com

9

1.8.1 Shibboleth

Shibboleth [34] is a mechanism for single-sign on for information systems. Shibboleth

is a federated identity-based authentication and authorization infrastructure based on

Security Assertion Markup Language (SAML). The Shibboleth architecture is divided

into two primary components, Identity Provider and Service Provider. Shibboleths

primary Access Control mechanism involves a several step process. This process first

involves an entity being redirected from a resource to a Shibboleth Identity Provider.

This entity then authenticates against the Identity Provider by which a SAML au-

thentication assertion is returned by the Identity Provider to the Service Provider

which is then consumed. Although Shibboleth provides a mechanism for federated

access, a primary weakness in this mechanism is attacks directly on the Identity

Provider or the Service Provider. A legitimate request can be redirected to a poten-

tially malicious Identity Provider that steals entity credentials [35]. Additionally, as

Shibboleth requires external authentication request using HTTP, XML and SAML

standards, many web based attacks are prevalent such as XML encryption assertions

in transit.

1.8.2 OpenID

OpenID [33] incorporates a similar authorization and authentication architecture to

Shibboleth. OpenID has seen considerable adoption in large organizations such as

Google, Yahoo and PayPal. OpenID comprises several components. These compo-

nents are requesting entity, relaying party (RP) and OpenID Identity Provider (OP).

The RP is the resource that seeks to validate the requesting entities credentials and

the OP is the mediator between the entity and the RP. This form of Access Control

can be viewed as delegation. In this context the requesting entity delegates rights to

the OP to act on its behalf to carry out some operation or access a resource being the

RP. The OP then returns results of the operation or request to the requesting Entity.

The reliance on delegation to the OP is a major security flaw in OpenID technology.

OpenID is particularly vulnerable to phishing attacks by which a user is directed to

a fake OP [16]. OpenID also suffers from major privacy and security flaws [3]. In

particular, as a requesting entity delegates rights to the OP to act on its behalf, the

OP has potentially unrestricted access to private data at the RP.

www.manaraa.com

10

1.8.3 OAuth

OAuth [19] is a technology once again comparable to Shibboleth and OpenID. OAuth

foundationally is built on an open standard of delegated authentication. OAuth differs

from OpenID in one fundamental way. OAuth utilizes tokens to delegate access where

as OpenID uses certificates that contain private information. The use of tokens creates

capacity for pseudo-authentication or obfuscating one’s identity. However, OAuth

like OpenID is also susceptible to several serious attacks [17]. Similarly to OpenID,

phishing attacks are prevalent at Identity Providers. Other weaknesses include lack

of data confidentiality and brute force attacks against certain token types.

1.9 Direct Assertion

1.9.1 DAC

One of the first approaches to provide direct assertion is Discretionary Access Control

(DAC) [32]. DAC enables access to resources objects based on identity of the client

and the group the client belongs to. However, DAC lacks ability to accurately describe

the association between client and resource; the lack of meta-data associated with

function can create security holes and result in overly complex policies [12].

1.9.2 MAC

Similar to Discretionary Access Control, Mandatory Access Control (MAC) [24] de-

fines access control lists and attributes present in a given system. However, MAC

does not allow delegation of these privileges to anyone but the administrator of the

Access Control policy. Unlike DAC, MAC allows security administrators to define

domain wide Access Control policies. Although DAC and MAC are effective access

control solutions, they do not necessarily facilitate mechanisms of federate access, ne-

gotiation, dynamic scalability and modularly, all of which are critical to distributed

architectures like Cloud Computing.

www.manaraa.com

11

1.10 Hybrid Assertion

Chadwick [4] [6] first bound attributes to X.509 certificates. This precedent led to the

development of Role-Based Access Control (RBAC), an attempt to solve problems

with scalable access control for large distributed infrastructures [5] [1] [20] [2].

1.10.1 RBAC

Role-Based Access Control originates from the efforts to minimize complexity of a

given policy. RBAC ties cryptographic permission attributes directly to a crypto-

graphic role. Additionally, efforts have been made over the years to further evolve

RBAC capabilities and mechanisms [28] [39] to scale with distributed infrastructures

such as attribute hierarchies [21]. The role abstraction layer imposed limitations

on the capabilities of distributed federated architectures. For example, federates

must maintain the same record of complex role definitions to facilitate inter-federate

member access. However, primary problems associated with RBAC include difficulty

mapping roles across a federated domain. Organizations would have to agree upon

common attributes.

1.10.2 ZBAC

The mechanism authoriZation Based Access Control (ZBAC) [18] attempts to ad-

dress issues relating to the difficulty of reaching cross organization agreements on

shared attributes or roles. In this context, ZBAC tends to be more asymmetric when

compared to other Access Control mechanisms. This is accomplished by moving

the Policy Decision Point (PDP) into the requester domain instead of the resource

domain. In this sense, authorization is based on the authentication in the users

domain before a request is made. This can be considered preauthentication. The pre-

authentication credential is then submitted along with the request to the intended

resource. However, as RBAC requires mutual understanding of roles, ZBAC requires

mutual understanding of federated agreements. ABAC, however, does not require any

mutual agreement. An organization may choose to informally or formally announce

what roles are present in the system along with what services are offered. It is then

left up to the requesting system to map the given syntactic role definition to a given

policy implementation. Additional details concerning these unique ABAC properties

are defined later in Section 5.

www.manaraa.com

12

1.10.3 ABAC

Attribute-Based Access Control (ABAC) binds attributes and roles directly to a client

credential. David W. Chadwick et al. first bound authorization information to X.509

[6] that has resulted in cross domain authorization. However, when considering silo-

based federated architectures, each silo system may implement a unique set of policies;

authorization in testbed A with role X may not be valid in testbed B. Therefore,

ABAC establishes the means for unique federate policies while maintaining cohesive

cross federate roles. ABAC expands authorization capability for federated distributed

architectures. ABAC provides an effective means for access control in rapidly evolving

systems [38], can fully encapsulate existing policy definitions [25] and provide a means

for trust negotiation while preserving privacy [25]. ABAC also facilitates extended

attribute hierarchies for confidentiality, scalability, fine grained access control in Cloud

storage, and aggregation of complexity. ABAC has also been shown to enable multi-

domain access control supporting the inter-system mapping of roles and attributes.

Additional properties of ABAC include concurrent and adaptable policies based on

risk. These capabilities and properties provide the basis for replacement of legacy

policies and access mechanisms in multi-domain distributed, federated infrastructures.

ABAC has been integrated within distributed infrastructures such as ProtoGENI [31]

and DETER’s Federation Architecture [7].

ABAC incorporates a formal logic of authorization [8] within a cross-platform im-

plementation [10]. It allows testbed operators to state access policies as a collection

of attributes, provides a logic engine that uses these policies to make decisions and

produces a record of the reasoning used to arrive at those decisions in human- and

machine-readable forms. Policy statements enable a precise translation of roles be-

tween administrative domains across a federation, e.g. a supervising research scientist

attribute in one domain may translate to project leader in another.

1.11 ABAC Introduction

1.11.1 Attribute-Based Access Control

ABAC policies are expressed in Role-based Trust-management (RT0) logic [22] which

is a first order predicate logic that can be translated into datalog and are crypto-

graphically signed. RT0 logic provides the foundation for many of ABACs logical

www.manaraa.com

13

grammar. The following section provides introductory material to RT0 logic and

unique credential and policy properties.

1.11.2 RT0 Logic

RT0 logic and associated language are rooted in two fundamental works of William

H. Winsborough et al, credential chain discovery [23] and credential graphs [37].

Credential chain discovery or (CCD) is the process by which access control decisions

are made by finding one or more paths from the resource requestor to the authority of

that resource. Four possible states occur from a given access control query. The first is

a failure at the first delegate chain link, the second a partial chain where one or more

attributes match. The third state is a single successful chain link and the fourth

and final is when more than one successful chain has been created. Each of these

states can result in a distinct response to the requestor based on the requirements

defined within the system. Credential graphs are the resulting structure of one or

more credential policies that may be queried given a set of query attributes and a

requestors identity credential. These fundamental properties define the reasoning

logic required to formalize access control policies.

1.11.3 RT0 Syntax

The RT0 declarative logic and language are defined by two primary constructs called

entities, also referred to as principals, and roles. Roles and entities are coupled in

the form of ENTITY.role where the dot notation signifies binding of the role to the

given entity. The dot also semantically expresses the entity’s ownership of the given

role. Through this mechanism, a role may be delegated to other entities within the

system. RT0 incorporates four primary kinds of credentials: membership, role-based

membership, link-based membership and intersect membership. Membership is the

direct association of an external entity to the role owned by another entity. This can

be denoted as RESOURCE.role ← REQUESTOR. Similarly, the role-based mem-

bership describes a trust relationship between two entities where anything trusted

by the first entity should be trusted by the second. This can be denoted as RE-

SOURCE.role ← REQUESTOR.role. In this case any requestor that is delegated

a REQUESTOR role also has access to the RESOURCE through the role mapping.

Link-based membership describes the mechanism of delegation within RT0 logic. This

form of credential delegation can be illustrated through the following example. If en-

www.manaraa.com

14

tity A trusts B and entity B trusts C, then A should also trust C, therefore C has the

credential to access A through implicit delegation of authority. This can be denoted in

the form of RESOURCE.role ← RESOURCE.role1.role2, where REQUESTOR1 ←
RESOURCE.role1 and REQUESTOR2.role2. The final credential type, membership

intersection, denotes the mechanism by which members of RESOURCE.role result

in the intersection of members of each entity role present in a given system. This

mechanism can largely be viewed as credential aggregation of one or more roles to a

given requesting entities. Alternatively described, a requesting entity would require

partite sets of credentials to be delegated access to a role owned by another entity.

These credential membership mechanisms provide one of the primary components

of ABAC aside from Credential chain discovery and Credential graphs.

1.11.4 Credential Chain Discovery

Credential chain discovery as mentioned is the mechanism by which an access control

policy may be reasoned about by the entity that controls a resource. Given the

set of RT0 credentials, there are three primary types of queries that can be made

over credential chain relationships. These queries are illustrated as follows. The

first query type is described, given a role denoted r and an entity E, determine if E

is an element of Role→+ Entity delegations. Alternatively put, for a given set of

linking roles associated with Entity E, is a role denoted r associated with entity E

through the credential mechanisms illustrated in RT0 logic. The second query type

is expressed in the follow manner: given a role denoted r, obtain all members in set

S with the matching role r. The third query time is expressed as follows: given an

entity E, determine all roles r associated with E. These three query types are powerful

mechanisms that enable complex RT0 and ABAC access control systems to reason

about credential based policies.

1.11.5 Credential Graphs

As previously described, a credential graph is a directed graph that represents the

relationships between two or more attribute certificates and one or more attribute

certificates bound to entity certificates. Each node in a credential graph C represents

a role expression and every edge in the graph is denoted as a credential edge. One

or more role credentials can be attributed to an entity credential. Credential edges

are a super set of semantically related derived edges, which represent the semantic

www.manaraa.com

15

relationship between roles within the credential graph. Derived edges are the super

path or the direct path between semantically linked role credentials within the cre-

dential graph. For each derived edge there exists one or more support sets. Each

support set defines the set of paths between two credentials linked by the derived

edge. Credential graphs mathematically support closure properties and have been

proven for soundness [37].

1.11.6 Search Algorithms

Credential graphs and chain delegation only provide the framework at which policy

can be derived for authorization. However, to provide the capacity to authenticate

against an RT0 policy, mechanisms of searching and querying the policy must be

established. For a credential graph C that contains a subset of entities E, role names

R, edges e and a set of delegate chains DC, there exists subsets of derived edges that

assert a mapping between E and some R by a path of a set of e. RT0 provides three

different search or query algorithms over a credential graphs credential chain between

different query elements. The first of these search algorithms is Backward Search.

Backward Search takes a given credential role in the graph and extracts the delegate

chains that link to credential entities in the policy set. The return result is a set

of entities that, through some credential chain CD, has a derived path to the given

query credential. The second search algorithm is Forward Search. Forward Search

takes a given entity credential E and follows credential chains to locate all credential

roles associated with the E through both credential edges. From the resulting set a

derived edge can be created to assert the relationship between E and a given specific

credential role r. The third and final search algorithm is defined as Bidirectional

Search. Bidirectional Search takes an entity E and a credential role r and performs a

Forward Search and Backward Search to define an explicit credential chain between

E and r. Bidirectional Search can thus be used to perform authentication for a given

Entity and a desirable role within the system. For example, for a user Alice972348234

which is an arbitrary unique code for this user and a role defined as UVIC.user, a

Bidirectional Search is initiated with these parameters. If a delegate chain exists

between the entity code Alice972348234 and UVIC.user, then we assert that this

users entity code has a derived edge between the Entity credential Alice972348234

and the role UVIC.user. Authentication is thus possible through the combination of

credential graphs, delegate chains and query algorithms.

www.manaraa.com

16

1.11.7 ABAC Overview

Attribute-Based Access Control (ABAC) is the mechanism that implements much of

the research by William H. Winsborough et al. and David W. Chadwick et al. [4]

ABAC also builds upon the RT0 properties of credential graphs, delegate chains and

search algorithms. In more practical terms, ABAC is an authorization and authenti-

cation system that supports delegate-based authorization, auditing, interoperability

between implementations and mechanisms to control how much information is re-

vealed by requestors and granters.

Like RT0, ABAC incorporates two primary types of credentials, Principals and

Attributes. In this context, Principals are comparable to Entities in the RT0 model

and Attributes subsume the role credentials. The primary distinction between role

credentials and attributes is the layer of abstraction. More specifically, roles define a

specific nature of existence, to represent roles, whereas an attribute can take on any

meaning. The generic nature of attributes significantly expands the expressive power

of ABAC to define complex policies not limited to roles.

1.11.7.1 Principals

Principals may be representative of a single user or an organization such as a cor-

poration. Principals, through credential chains, can exert ownership or control over

one or more attributes. For example, a principal can be the subject of authoriza-

tion or the granter and assert of rights of a requesting principal. Thus to devise a

new attribute that semantically represents some element of an access control policy,

a principal must create a new attribute. The principal that creates this attribute

retains ownership of it. Once an attribute has been created, this attribute may be

delegated to another principal. This process of delegation is comparable to giving

rights to a user to access systems owned by the principal who created that certifi-

cate. This can be illustrated by the following example. A principal denoted UVIC,

creates an attribute User in the semantic definition UVIC.User. In this case User is

the attribute and UVIC is the principal that created the attribute User. It should

be noted that the dot in UVIC.User asserts ownership of the User attribute. A user

David is considered another principal denoted DAVID. Therefore, to create a delega-

tion must take place. This is described by DAVID ← UVIC.User, where this means

that the principal credential DAVID is delegated the rights of a UVIC.User. ABAC

supports many delegation types additional to Simple Delegation as seen in the pre-

www.manaraa.com

17

vious example. Delegation will be described in greater detail in a later subsection.

Attributes discussed in the next subsection provide the foundation by which more

complex policies and delegation mechanisms can be discussed.

1.11.7.2 Attributes

Attributes provide the foundation for building and deriving policies. Every attribute

that is created must be created by a principal. An attribute credential or certifi-

cate is stored in an attribute certificate file with the extension .der. Within this

attribute certificate a signature based relationship is defined. An example of such a

signature based relationship can be seen in the following example: a811a3ab98a3437

40b2eb4f07e31200cf2bc9178.GetVersion ← a811a3ab98a343740b2eb4f07e31200

cf2bc9178.AllAPI. The leading elements that comprise the credential have been left

out for brevity.

As observed, there exists a certificate signature extended by the attribute principal

defined semantic definition GetVersion following by a signature key and the principal

attribute AllAPI. The two definitions are related using an arrow “←”. When this

attribute is loaded into the ABAC access control libraries, the semantic definitions

of the attributes, GetVersion and AllAPI, are the vertexes or nodes of the credential

graph. Additionally the prefix for each semantic definition is asserted by a principal.

In this case a811a3ab98a343740b2eb4f07e31200cf2bc9178 is a signature of a princi-

pal that can be replaced with the principal name UVIC. Thus we obtain a comparable

relationship UVIC.GetVersion ← UVIC.AllAPI which in turn describes the relation-

ship; if a principal is delegated the attribute UVIC.AllAPI then this principal also

has access to UVIC.GetVersion. This relationship is created by simple delegation

defined as UVIC.GetVersion → UVIC.AllAPI, or simply UVIC delegates the rights

or chain to the attribute UVIC.AllAPI for UVIC.GetVersion. UVIC can also delegate

the rights to a principal, in this case a user who desires to access UVIC.GetVersion.

This delegation is described asa811a3ab98a343740b2eb4f07e31200cf2bc9178.AllAPI

← 8544f78944576fcd91090d31003cb86c61c9559f. In this case the user has a signature

8544f78944576fcd91090d31003cb86c61c9559f and has to AllAPI. Substituting seman-

tic definitions we get, UVIC.AllAPI← DAVID, or David has access to UVIC.AllAPI.

This results in the comparable delegation, UVIC.AllAPI → DAVID, or UVIC

delegates the UVIC.AllAPI rights to David. This set of relationships creates the

delegate chain, UVIC.GetVersion ← UVIC.AllAPI ← DAVID. Finally incorporating

www.manaraa.com

18

Table 1.1: Principal Attribute Association.
Direct Assignment U has attribute

AM.ListResources
AM.ListResources ← U

Delegation All principals with attribute
AM2.ListResources have
AM1.ListResources

AM1.ListResources ←
AM2.ListResources

Linked Delegation Any principal P with
the AM2.Linked at-
tribute can assign the
AM1.ListResources at-
tribute by assigning the
P.ListResources attribute

AM1.ListResources ←
(AM2.Linked).ListResources

RT0 logic principals we get the derived edge UVIC.GetVersion ← DAVID. These

delegate mechanism provide the foundation for describing policies in ABAC. How-

ever, delegation is the foundational element to create policies suitable for distributed

architecture.

1.11.7.3 Delegation

Delegation provides the power to describe complex associations between ABAC cre-

dentials and formally define robust policies. More particularly, delegation is key to

policy properties such as scalability and modularity. A well-defined policy incorpo-

rates delegation to minimize coupling between attributes through implicit delegation

relationships. This in turn reduces the number of credential edges that must be man-

aged in a given policy as the policy evolves over time. ABAC supports three primary

kinds of delegation, two of which have already been covered. These types of delega-

tion are Direct Assignment, Delegation or Simple Delegation and Linked Delegation.

These types of delegation can be viewed in the Table below.

Linked Delegation provides a powerful mechanism of scalability and modularity in

ABAC policy design. This form of delegation and the resulting link in the credential

graph has the capacity to bundle large segments of policy together through implicit

linking. More specifically, to consider the Linked Delegation example above, any

principal with AM2.Linked is automatically delegated the rights ListResources. The

credential graph does not have edges between these attributes and instead the edge

is created dynamically at query time. The power of linked attributes can be further

expanded by the example of doubly-linked attributes.

www.manaraa.com

19

For example, (AM1.Linked).ListResources← (AM2.Linked).ListResources defines

an attribute relationship where two disjoint segments of policy are combined without

explicit credential edges. Linked Delegation allows for permissions to be aggregated

at runtime instead of explicitly defined. This enables policy to be partitioned into

sets and managed independently from one another.

1.11.7.4 Mechanism

As mentioned ABAC policies are expressed in RT0 logic [22] which is a first order

predicate logic that can be translated into datalog and are cryptographically signed.

Additionally, relationships between attribute certificates and attribute signatures pro-

vide the capacity to form comprehensive access control policies. However, for ABAC

to subsume the role as the primary access control mechanism in a distributed architec-

ture, it must be supported with an interoperable and flexible implementation. ABAC

is implemented into the open source libabac. The library libabac can be considered

a generic mechanism such that it provides only the capacity to facilitate credential

graphs, chain delegation, search and credential verification and validation.

1.11.7.5 Implementation

The implementation of libabac can be separated into several primary components.

These components are strongSwan, a C-based runtime library and two wrappers in

Python and Java. The Python wrapper is automatically generated using Simplified

Wrapper and Interface Generator (SWIG). The Java wrapper is a custom written

wrapper that augments the C runtime libraries. Cryptographic functionality asso-

ciated with credential validation and creation is delegated to the strongSwan open

source Linux IPSEC libraries. This library provides the foundation for integration

and interoperability with Python, Java and C-based architectures.

ABAC through its grammar, credential graphs, credential chains, delegation,

search capabilities and library interoperability provides the functionality to satisfy

all formal and informal requirements necessary to be used as a primary means for au-

thorization and authentication in corporate and enterprise distributed architecture.

The following two case studies demonstrate this capacity. The first case study ana-

lyzes the feasibility of integrating ABAC into a legacy architecture. The second case

study analyzes the feasibility of integrating ABAC into a modern architecture.

www.manaraa.com

20

Chapter 2

Case Study 2: ABAC Integration

for Open Source Architectures

2.1 PlanetLab SFA Introduction

PlanetLab [30] is a modern, extensible and scalable infrastructure for the deployment

of distributed systems that has been in continuous operation since 2002. Today

it numbers over 1000 nodes at more than 300 sites worldwide. In order to scale,

PlanetLab adopted a federated architecture in 2007. PlanetLab is an ideal candidate

to evaluate the feasibility of integrating ABAC into a legacy architecture.

PlanetLab exhibits a distributed federated architecture and functionality resides

in distinctly-defined silos. This case study segments analysis into several sections.

In Section 2.1.1, the Slice-Federated Architecture is defined and analyzed. In Sec-

tion 2.2, requirements for legacy access control mechanisms are defined and elicited.

In Section 2.3, ABAC libraries and mechanisms are integrated into the SFA. In Sec-

tion 2.4, the work required to transition legacy policy to ABAC policy is described

and in Section 2.5 results and analysis of these processes are defined.

2.1.1 Slice-Federated Architecture

The Slice-Federated Architecture (SFA) layer is the legacy framework that enables

PlanetLab to form a federated architecture built on the notion of mutual trust. An

understanding of this legacy architecture is critical for evaluating the method, mecha-

nisms and abstraction required to successfully migrate a legacy architecture to ABAC.

Analysis of the SFA layer is divided into two parts. The first part involves evaluating

www.manaraa.com

21

inter-module and inter-server architecture for communication, trust and functionality

dependencies. The second is evaluating existing access control policies for trends,

correlation and potential hurdles for implementing an ABAC driven policy. To initi-

ate the investigation of the feasibility of integrating ABAC into a legacy architecture

such as the SFA, a general overview of the PlanetLab SFA is given.

PlanetLab’s SFA architecture is divided into four primary server archetypes that

each implement a different set of communication, functionality, and trust dependen-

cies. These server archetypes are Slice Manager (SM), Aggregate Manager (AM),

Registry Manager (RM) and Component Manager (CM). We note that the legacy

CM has subsumed a previous server archetype denoted as the Node Manager (NM).

The archetypes in the SFA model correlate to common Cloud Computing platform

archetypes. The SM acts as an inter-federate proxy that mediates operation requests

to AMs; the SM is comparable to a proxy and shares functionality with a Eucalyptus

Cloud Controller. The AM manages the allocation and mediation of resources that

exist in a federate member’s deployment; the AM is comparable to a Eucalyptus

Cluster Controller. The RM in the SFA model acts as a domain registry for virtual

and physical resources; the RM is comparable to a credential database. The RM

exists as a Slice- and credential-driven access and policy database. The CM exists

as a set of control resources that directly interface with node resources; the CM is

comparable to the Eucalyptus Node Controller. Based on this initial comparison, this

study investigates pre-existing legacy access control mechanisms and requirements.

2.1.2 Defining Legacy Access Control Mechanism Require-

ments

The SFA utilizes a legacy authentication and authorization module defined within the

Python package sfa.trust. The package trust further defines eighteen Python modules

and schemas used in credential validation. This package contains a total of 3365 lines

of Python code and 672 lines of XML schemas used for credential validation. These

numbers do not include additional modules present throughout the legacy code base

that provide auxiliary authentication capacity in support of the trust package.

Two management interfaces have been introduced and annexed onto existing SFA

policy, the command line SFI and its GUI wrapper Sface. The client interfaces with

the SM, AM, NM and RM through Sface or SFI to instantiate and control Slice-

or Sliver-based resources. SFI authorizes client-based requests by querying the RM.

www.manaraa.com

22

When federating two testbeds, the RMs may be accessed from either testbed by the

AM, SM and SFI. Similarly, the SMs may interface with Managers found in the other

testbed. The inter-Manager complexity increases proportionally to the number of sites

that are involved in federation. To integrate into the SFA, an ABAC library must

be developed to abstract deployment and role based dependencies into attribute rela-

tionships. Similarly, an abstraction is made for communication dependencies between

modules into attribute relationships in ABAC policies. Trust is established between

components by use of ABAC policy attributes and use of attribute hierarchies.

By abstracting these elements into ABAC policy, the legacy SFA’s access con-

trol mechanisms can be decoupled from implementation. Specifically, policy can be

factorized among each Manager (component) in the architecture. Thus each Man-

ager within the system can exert a certain level of component level authority over

the resources each provides. Furthermore, legacy access control architecture in the

SFA also incorporates centralized access control per operational domain. The term

operational domain encompasses the notion of some owner of a given resource within

the distributed system. PlanetLab is a federated architecture; many computational

resources and owners of those computational resources are shared within a trusted

environment. Thus, the notion of trust is enforced through use of databases that

replicate data among each site in which a set of PlanetLab resources are deployed.

This can be seen in Figure 2.1 which illustrates both the legacy PlanetLab SFA ar-

chitecture and the mechanisms involved in access control.

As observed in Figure 2.1, policy is centralized at the Registry Manager. The

centralization of policy at the RM creates a dependency relationship between core

infrastructure SFA architecture components and the Registry Manager. Simply put,

dependency in architecture inhibits scalability and is a potential bottle neck between

access control calls. A bi-directional trust relationship is also formed between compo-

nents (Managers) in the architecture illustrated in Figure 2.1. Each Manager in the

SFA architecture also establishes mutual trust between architecture components. For

example, a specific SM denoted UVIC.SM explicitly trusts a AM denoted UVIC.AM.

This explicit trust relationship can also put unnecessary constraints on other feder-

ated components, and in turn requires n edges between m child components. In this

case study, the factorization of these trust relationships is demonstrated using the

notion of mutual distrust.

Finally, each Registry Manager must retain data for every other operational do-

main within the federated architecture. Alternatively viewed, for each deployment

www.manaraa.com

23

Figure 2.1: PlanetLab Access Control Architecture

www.manaraa.com

24

within the SFA owned and operated by a given organization, a database must be

kept up to date for every other federated entity within the PlanetLab distributed

architecture. It is apparent how possible discrepancies and flaws in maintaining these

policy sets may expose security flaws or vectors to be exploited. For example, there

may exist discontinuity between users within PlanetLab; a user may be invalidated

in one PlanetLab deployment but may be a legitimate user in another deployment.

Similarly, one deployment may have record of an instantiation of resources in one de-

ployment but not another. This problem can be defined within the scope of a blanket

policy, or a policy that governs all resources in a distributed system. However, Plan-

etLab is a federated architecture and therefore blanket policies are not feasible and

eliminate all notions of federation. To reiterate, federation is built on the notion of

sharing resources for the purpose of gaining capacity. Many academic institutions use

the federation capabilities of SFA to join small clusters of resources together to gain

access to a much larger set of resources. Thus each institution may desire to impose

different policies, within different countries and different legal frameworks. ABAC by

its inherent set of capabilities, can facilitate federation, scalability, reconfigurability

and fine grain policy without extensive management of localized databases. Sec-

tion 2.3 of this study provides an in-depth analysis of these capacities. However, to

understand how a legacy system such as the SFA can adapt an ABAC access control

mechanism and policy, the architecture first has to be understood. The next section,

Section 2.2 provides this analysis and introduction.

2.2 Legacy Architecture Design

As noted previously, the PlanetLab SFA is comprised of five primary Managers or

Components. These components are: (1) Slice Manager, (2) Aggregate Manager, (3)

Registry Manager, (4) Component Manager and (5) Client Interfaces including but

not limited to Sface and SFI. Each of these Manager’s exhibit two notions of tight

coupling: tight coupling between components themselves and tight coupling between

access control mechanism and component.

Tight coupling is problematic from an architecture perspective for two major

reasons. The first reason is that it inhibits scalability of the architecture. The second

reason is that it can inhibit architecture evolution. As technology, client requirements,

system requirements, resource requirements and services evolve, so must the system

architecture.

www.manaraa.com

25

In particular the SFA API exhibit tight coupling of both access control mechanism

and inter-component dependencies. Specifically, access control or authorization and

authentication checks are performed both client-side and server-side. This duplication

adds no security benefit as XML-RPC is used over an SSL tunnel. This duplication

only imposes a limitation to system evolution and scalability. Upon more investigation

it can be observed that both client and server verify SSH key credentials supplied

through SSL XML-RPC, verify the key to sliver association and verify certificates.

Both client and server also verify permission to execute a designated action and

validate user GID.

ABAC eliminates this duplication by factorizing policy from access control mech-

anism by bundling proof of authorization with the client credential. The communica-

tion and structural hierarchies and hard-coded policy and legacy access mechanisms

are abstracted into an ABAC nomenclature to enable the mapping of roles between

federate entities and client credential to policy. However, more detail about this pro-

cess and the work completed to integrate ABAC into a legacy architecture such as

ABAC is defined in Section 2.3. Analysis of access control policy is the final step to

formalizing understanding of the legacy SFA architecture.

2.2.1 Defining Legacy Access Control Policy Requirements

PlanetLab authorization policies are expressed as a series of specific terms that are

used within the scope of this paper. These terms are, role, relationship and policy.

With regards to the term role, role-based authorization has been studied and has

be seen to be effective at access control [13] [14]. A role within PlanetLab is as

an aggregate of capabilities. It should further be noted that PlanetLab roles may

contain subsets of capabilities of other roles. A relationship is the mapping of a

role to a capability. The term policy describes a collection of relationships. These

relationships are many to many.

These three terms define the context by which policies in PlanetLab are created.

To illustrate tight coupling within the given legacy access control framework, a user

case is explored. This use case involves a client attempting to instantiate a sliver

within PlanetLab. As defined, the AM validates the client credential and correct

association between client and a slice allocated through the AM. The request to

instantiate a sliver through the SM, results in a request being placed at the RM for

authorization. Once validated the request then propagates back to the AM which

www.manaraa.com

26

again validates credentials by sending a request to the RM. Finally, the AM places a

request at NMs to instantiate the request for resources.

As described, three primary aspects of legacy access control can be observed: (1)

the access policy is spread over multiple Managers and domains, (2) different federates

can implement different access policies, (3) roles can be mapped between federates

resulting in a communication dependency.

To further illustrate the potential for an inter-dependency relationship the fol-

lowing example is provided, testbeds (A and B) that are federated. If a user from

testbed A instantiates on testbed B, the SM of A must make a request to the RM of

B to authorize the user. Client credentials must be transmitted across the federate

and conform to expected credential standards of testbed B. This process forces static

behavioral interfaces between federate members.

As noted previously and in addition to distinct Manager archetypes, PlanetLab’s

SFA layer also implements a set of distinct user roles with specific capacities and

permissions within the federate environment. These roles are User, Principal Inves-

tigator, Administrator and Technical Contact. These roles implement two sets of

distinct capabilities depending on the access context. A client may access PlanetLab

resources through the SM or the Slice Federated Interface (SFI) command line tool.

The SM Manager acts as a proxy on behalf of the client request. By this functional-

ity, access is less restrictive as request specific parameters are obtained from the RM.

The SFI tool is parameterized by the Client and therefore requires additional access

control checks to be performed. These checks can verify access control relationships

such as the association of a client with a specific resource. However, as the credential

databases per each PlanetLab operational domain may differ, so can role definitions

or the privileges associated with each role.

ABAC once again has the inherent capacity to subsume the association of a syn-

tactic role definitions with multiple semantic meanings. This process is described in

Section 2.3.

2.3 ABAC Policy

As mentioned, PlanetLab’s existing access control policy is bound to the access control

implementation by a functional means. Additionally, there exists explicit trust rela-

tionships between Managers based on function and role. The tight coupling of policy

implementation and bi-directional trust relationships are each eliminated by one or

www.manaraa.com

27

more properties of ABAC. First, access control is separated from policy through the

ABAC libraries that were developed and integrated into the legacy SFA layer. Ad-

ditionally, ABAC provides access control capabilities by abstracting policy to a logic

layer in memory over a generic access control mechanism. Secondly, inter-component

dependencies are decoupled through the factorization of policy.

To implement an ABAC policy, existing architectural policy must first be formally

defined. Once a formal policy has been devised, it can be abstracted, designed and

expressed in ABAC grammar. The process and construction of the ABAC grammar

for the PlanetLab SFA described in this section. However, a more rudimentary aspect

to ABAC policy design is actually the factorization of policy among components, or

more generally, the decoupling of components.

PlanetLab components or Managers each perform a specific role. The NM man-

ages node resources. An AM manages NMs for a site or SFA deployment. The SM

manages access to PlanetLab resources and acts as a proxy to other Managers. The

RM manages credentials and policy for users, slices, components and authorities.

Therefore, the role of a given Manager is the primary starting point for factorization.

More specifically, each Manager can be viewed as an agent working on behalf of an-

other Manager or Client. This inherent autonomy thus implies the delegation of an

identity credential. ABAC relies on two kinds of credentials Principals and Attributes.

In this case each Manager is delegated a X.509 certificate Principal credential. A Prin-

cipal credential enables that entity to delegate and assert rights solely owned by that

Principal. In this case, delegating Principal credentials to Managers enables each

Manager can assert authority over the resources and services defined by its role def-

inition. Similarly, by enabling the assertion of policy at a resource level owned by

a specific Manager entity, tight coupling is eliminated. Tight coupling is eliminated

because the authentication and authorization requirements defined within the policy

of the Manager are no longer entity specific. A Manager may assert any number

of requirements for authorization and authentication such as asserting membership

to the federation or another role. In this way an Aggregate Manager may assert

that only Slice Managers may access restricted resources. As long as the requesting

client credential contains the PlanetLab.SM attribute in the signature portion of the

certificate, access is granted. This relationship can be defined simply as Credential

← PlanetLab.AM. Although this in principle can provide the needed policy require-

ments to facilitate federation and decouple components, this approach is by no means

www.manaraa.com

28

complete. The following sections detail the process of decoupling access control from

policy and components from each other.

2.3.1 The Transition from Legacy To ABAC Access Control

Mechanisms

The first stage to the integration and formalization of access control policy is defin-

ing the critical components of legacy architecture required to integrate ABAC access

control libraries. With most legacy systems, extensively modifying modules, compo-

nents or libraries can have significant and serious consequences. Resulting outcomes

of such drastic modifications use near irreparable and costly damage of the legacy

architecture. Therefore, great care is taken to identify a minimal dependency graph

of modules that are involved in access control. Encapsulating the mechanisms within

pre-existing API calls reduces impact to architecture. The first portion of code that

was identified as the primary access control method was the checkCredentials(*)(*

denotes a set of parameters) method which is utilized in almost all client/server API

and related APIs. The checkCredentials method is modified to support ABAC re-

lated access control calls. Specifically, authorize(*) method is placed inside of the

checkCredentials method and can be toggled on or off using the PlanetLab SFA con-

figuration files. However, this method is not the only identified library that utilizes

and requires access control. Table 2.1 provides a more comprehensive view of the

changes within the legacy architecture required to facilitate the integration of ABAC.

Many of the observed modifications in the SFA architecture as noted in Table 2.1

define more utilitarian aspects of ABAC access control. A majority of the complex-

ity associated with ABAC access control is subsumed into a custom Python module

that provides an interface and facilities for ABAC. This Python wrapper interfaces

to the C library libabac through a SWIG interface. The ABAC wrapper may be

instantiated as an independent module within the legacy SFA allowing for the same

access control object to migrate through various layers of encapsulation within SFA

while maintaining a local unified policy of a given component. The libabac API has

been further expanded within the Python wrapper to support a robust, fully encap-

sulated independent module. Details relating to the provided API can be observed

in Table 2.2.

Additional facilities provided within the ABAC wrapper include algorithms to pro-

vide conversion between certificate credentials, auditing, logging, maintaining access

www.manaraa.com

29

Table 2.1: Modified Modules and Objects.
Package/Module Object Modification
sfa.client.sfi.py class level Modified several API calls to obtain

ABAC credentials.
sfa.plc SfaAPI Modified generic API object to load

ABAC credentials.
sfa.trust.auth.py Auth Primary integration point of ABAC.

Added new ABAC object to encapsu-
late functionality.

sfa.util.api.py BaseAPI Modified BaseAPI object to load
ABAC configuration and load ABAC
credentials.

sfa.util.config Config Modified the Config object to support
ABAC variables and resources.

sfa.config.gen-sfa-cm-
config.py

class level Extended default configuration param-
eters to incorporate default ABAC con-
figuration and directories.

Table 2.2: libabac Python Wrapper
libabac API Python API
query(role, principal) authorize(self, role, principal)
Context(context) cloneContext(self, context)
load id chunk(identity chunk) load identity chunk(self, identity chunk)
load id cert(identity file) load identity cert(self, identity file)
load attribute chunk(attribute file) load attribute cert (self, attribute file)
load directory(key store) load directory(self, key store)
credentials() get credentials(self)
Attribute(self, identity1, attribute, iden-
tity2) (and additional API calls)

create attribute(self, identity1, attribute,
identity2)

ID(id) createIdentity(self, id)
load id chunk(identity chunk),
load attribute chunk(attribute file)

load attribute(self, identity, attribute)

www.manaraa.com

30

Figure 2.2: PlanetLab ABAC Access Control Architecture

control context and managing policy credentials. Furthermore, the external ABAC

library is comprised of three primary Python modules. These are abac manager.py,

abac wrapper.py and abac logger.py. The abac manager module implements creden-

tial management functions such as delegating new credentials to new clients. The

abac logger module implements access control logs for all valid, partially valid and

invalid access control attempts. Finally, the abac wrapper implements core access

control API away from the libabac implementation. The functions provided through

this API abstract complexities managing ABAC credentials such as authorization

context, attribute certificates and identity certificates. The modules described exist

external from the SFA implementation. This ensures that the legacy architecture

and the access control mechanism can evolve independently of their respective de-

pendents. This is critical, as policy can evolve independently from implementation

requiring little or no modification of the legacy architecture over time. To provide

a general overview of the modification to the architecture, the revised SFA ABAC

architecture is defined in Figure 2.2.

www.manaraa.com

31

As observed, policy is decentralized to each Manager in the SFA architecture.

Similarly, each Manager has the capacity to assert the SFA API at each Manager

location. For example, the Aggregate Manager can validate a requesting Slice Man-

ager using its own policy and ABAC library. More specifically, any Slice Manager, if

asserted by the appropriate attribute credential, can access resources governed by a

given AM. This assertion is described as PlanetLab.SM← AM.AllAPI. Formally, this

describes that the SM belonging to PlanetLab is delegated access to AllAPI governed

by AM. The AM in this scenario may control which SM the AllAPI attribute may be

delegated to. This use case provides only an example of a policy and access control

scenario. Now that policy and implementation are delegated and integrated among

Managers (components), an ABAC policy can be defined for each Manager reflective

of their given role.

2.4 ABAC Policy Integration

Design of an ABAC policy for a federated architecture is divided into four phases. In

phase one, PlanetLab policies are subsumed into an ABAC scalable policy through

the creation of attribute hierarchies using a formal policy descriptor. This phase is

defined as the mapping of Roles to Capabilities. In phase two, policy is factorized

among Managers to eliminate tight coupling. This phase is described as the mapping

of Capabilities to Resources. Phase three defines implicit delegation to form inter-

system trust and attribute capacities for federation. This phase is defined as the

Inter-Federate Mapping of Roles. The final phase involves integration of the proposed

policies with the SFA architecture. This phase is defined as the Separation of Access

Control Mechanism from Policy occurs.

Throughout this section policies are defined in RT0 logic and ABAC grammar.

ABAC policies are illustrated in tables that define attribute delegations. Delegations

can be read from right to left in first order predicate logic detailed in Section 1.11.

Delegations are in the form of column1←{column2}. Each element of the column2

set is directly delegated to the element in column1.

2.4.1 The Mapping of Capabilities to Resources

SFA Managers in PlanetLab each implement a set of operations defined as API. Each

Manager archetype (SM, AM, RM and CM) establishes relationships of explicit trust

www.manaraa.com

32

Table 2.3: PlanetLab Manager Attributes
Actor Delegated Assertions
(Principal: PlanetLab) and Attributes
PlanetLab.SM AM.AllAPI

PlanetLab.AM RM.AllAPI, CM.AllAPI,
PlanetLab.SFI

PlanetLab.RM RM.GetVersion, RM.resolve,
RM.list, SM.GetVersion,
SM.get credential

PlanetLab.CM No Delegations

PlanetLab.SFI PlanetLab.SM, PlanetLab.AM,
PlanetLab.RM, PlanetLab.CM

between other SFA Managers. For example, a set of CMs establish an explicit trust

relationship with an AM and vice versa.

These explicit trust relationships can be decoupled to allow for the SFA architec-

ture to scale in an Ad Hoc manner. This is achieved by factorizing policy among each

federate manager.

Access control policy is separated into bipartite sets to factorize these relation-

ships of trust. The first set specifies access and the second set specifies control. Every

operation at a specific Manager is under that manager’s explicit control. Every oper-

ation that may be carried out in the federation is delegated by another Manager. The

policy design results in Managers evaluating requestor federation membership status

instead of maintaining explicit relationship of trust between specific Managers. Sim-

ilarly, Manager credential access can be delegated as membership access or explicit

access to distinct Managers. The factorization of policy can be observed in Table 2.3.

An example of the above factorization is defined in the following examples. A Slice

Manager defined as SM1 asserts ownership of the operation CreateSliver through

the Attribute SM1.CreateSliver. This assertion thus implies that an entity would

require the specific attribute delegation SM1.CreateSliver to access operations at SM1.

Similarly, if the same entity tried to access SM2 with the attribute SM2.CreateSliver,

the access call would fail as the specific assertion was not made.

The next subsection addresses translating SFA’s federate policy into ABAC driven

federation mechanisms.

www.manaraa.com

33

Table 2.4: PlanetLab Manager Attributes
Actor Delegated Assertions and Attributes
Principal Attributes
PlanetLab Federated
GENICloud Federated
Orca Federated
ProtoGeni Federated

2.4.2 Inter-Federate Mapping of Roles

The federation of the SFA architecture is achieved through implicit trust relationships

and by the inter-federate mapping of roles. The creation and delegation of a common

attribute to each federate member enables the extensibility of access control policy.

By the explicit mutual trust of a common attribute, implicit trust can be dynamically

negotiated using RT0 logic to form a mapping of first tier attributes or roles to

another federate member’s first tier attributes. These implicit delegate relationships

are defined in Table 2.3.

The inter-federate delegations are pair-wise implicit delegate relationships of fed-

erate trust. These delegations are in the form of PlanetLab.User← (GENICloud.Fed-

erated).User. Similarly for GENICloud, there exists the relationship GENICloud.User

← (PlanetLab.Federated).User. Thus, policy extensibility can be achieved without

the requirement to define explicit trust relationships.

2.4.3 The Mapping of Roles to Capabilities

As seen previously in Section 2.2 PlanetLab incorporates four primary roles. Addi-

tionally, the context of integration also ensures that the semantics of role definitions

are decoupled from syntactic definitions. The SFA legacy implementation defines a

set of capabilities associated with a role. These capabilities are defined as operations

that may be called over HTTPS and XMLRPC. Operations may evolve indepen-

dently of semantic role definitions. Policy reconfigurability is enabled by decoupling

role from operation through attribute hierarchies. Within the policy definition ag-

gregate, attributes are defined such that they provide a common interface for roles

and operations (capabilities). Attribute hierarchies can be considered as layers of

internal semantic relationships or as a set of layered hashmaps. The hashmap keys

are the attribute identifiers and the corresponding value can be either a capability or

www.manaraa.com

34

Table 2.5: PlanetLab Role Attributes
Actor (Principal: PlanetLab) Delegated Assertions

and Attributes
PlanetLab.User SM.AllAPI
PlanetLab.TechnicalContact No Delegations
PlanetLab.PrincipalInvestigator PlanetLab.User
PlanetLab.Admin PlanetLab.User

another key to another hashmap. The attribute hierarchy abstraction allows for both

role and operations to evolve independently as the infrastructure evolves. In the case

of the SFA layer, two-tiered attribute hierarchies are defined. The first tier is a role

syntactical definition and the second is an aggregate of potential capabilities.

The first tier of attribute hierarchies can be viewed in Table 2.5 and Table 2.6.

PlanetLab implements a single quaternary set of syntactic role definitions. As ob-

served in Section 2.2, these syntactic definitions are responsible for mapping SM and

SFI relative roles. To devise the ABAC role mechanisms, semantic and syntactical

definitions of roles that the SFA layer implements are elicited and abstracted them

to a cryptographic data structure. This data structure is also considered as a basket

of capabilities in the ABAC policy set.

SM relative role attributes are a minimal attribute set that directly correlate

to legacy role definitions. As seen in Table 2.5, tier two aggregate hierarchies are

delegated to the first tier role attribute definitions.

However, SFI relative roles implement a disjoint attribute hierarchy set such that

some roles are directly bound to the SFI client credential as seen in Table 2.6. In this

way complexity is balanced between over abstraction and manageability of policy.

Two tier attribute aggregate sets are defined to facilitate the dynamic evolution of

operations and capabilities in the SFA architecture. These attributes can be observed

in Table 2.7. This table illustrates how sets of operations are aggregated to one of

four aggregate attributes: SM.AllAPI, AM.AllAPI, CM.AllAPI and RM.AllAPI. It

should be noted that all attributes are asserted by the corresponding SM, AM, CM

and RM principals that correlate to a SFA Manager. This policy structure is one

component to facilitate the factorization of policy.

These ABAC attributes comprise the core abstraction of legacy access control

policy into an ABAC grammar. ABAC attributes also decouple access control mech-

anism from implementation and components from each. However, in Section 2.5

www.manaraa.com

35

Table 2.6: PlanetLab Attribute Hierarchies
Actor (Principal: Plan-
etLab)

Delegated Assertions and Attributes

SFI.User SM.AllAPI, AM.AllAPI, CM.AllAPI, RM.GetVersion,
RM.get credential, RM.resolve, RM.list, RM.create gid,
RM.update, RM.remove

SFI.TechnicalContact SM.GetVersion, SM.ListResources, SM.ListSlices,
AM.GetVersion, AM.ListResources, CM.GetVersion,
CM.ListResources, RM.GetVersion, RM.get credential,
RM.resolve, RM.list, RM.create gid, RM.update,
RM.remove

SFI.Admin SM.AllAPI, RM.AllAPI, AM.AllAPI, CM.AllAPI
SFI.PrincipalInvestigator SM.AllAPI, RM.AllAPI, AM.AllAPI, CM.AllAPI

Table 2.7: PlanetLab Operation Attributes
Actor (Principal: Plan-
etLab)

Delegated Assertions and Attributes

SM.AllAPI SM.GetVersion, SM.ListResources, SM.CreateSliver,
SM.RenewSliver, SM.DeleteSliver, SM.SliverStatus,
SM.ListSlices, SM.get ticket, SM.start slice,
SM.stop slice, SM.reset slice

AM.AllAPI AM.GetVersion, AM.SliverStatus, AM.CreateSliver,
AM.RenewSliver, AM.start slice, AM.stop slice,
AM.reset slice, AM.DeleteSliver, AM.ListResources,
AM.get ticket

CM.AllAPI CM.GetVersion, CM.SliverStatus, CM.start slice,
CM.stop slice, CM.DeleteSliver, CM.reset slice,
CM.ListSlices, CM.redeem ticket, CM.ListResources

RM.AllAPI RM.GetVersion, RM.get credential, RM.resolve,
RM.list, RM.create gid, RM.register, RM.update,
RM.remove

www.manaraa.com

36

Table 2.8: Impact: Depth and Breadth of Execution Traces
Managers Legacy ABAC % Com-

plexity
Reduc-
tion

SM 309 3 99.03%
AM 309 3 99.03%
RM 309 3 99.03%
CM 309 3 99.03%

the ABAC policy design is evaluated with respect to impact, scalability, modularity,

reconfigurability and extensibility.

2.5 Impact

Impact on the legacy infrastructure must be minimized to ensure existing functionality

is preserved over its lifecycle. The criteria for impact is formalized by evaluating depth

and breadth of execution traces through the authorization logic per Manager. The

execution metric is devised by adding subsequent function calls together. If a function

call contains multiple sub-functions, the resulting recursive function call evaluation is

added. For example, if a function call contains two functions of depth two, the higher

order function takes on a value of eight. The same code trace method is conducted

on the ABAC integration but do not count calls to the external ABAC libraries that

reside outside of the SFA implementation. It should be noted that the original access

control code has been subsumed into the ABAC libraries. The results can be observed

in Table 2.8.

As observed from Table 2.8, the ABAC implementation reduces number of access

control calls in the legacy code base by 99.03%. This code is subsumed into the

ABAC external access control libraries. By this result it can observe that impact

is approximately 0.97% of authorization logic per Manager. From this result it can

asserted that the ABAC integration subsumes complexity of authorization logic into

a shared library. It should be noted that the primary evaluation is impact on the

legacy architecture and not dependencies on external modules. By this result it can

asserted that the ABAC implementation minimizes impact on the legacy architecture.

www.manaraa.com

37

Table 2.9: Reconfigurability: Change in Credential Set Size
Policy Size (bytes) for N Managers

Manager 0 5 10 15 20
SM 28021 30492 32963 35434 37906
RM 33427 35877 38327 40777 43227
CM 27068 29544 32021 34498 36974
AM 26584 29073 31562 34051 36540

2.5.1 ABAC Policy Scalability and Modularity

The integration of ABAC into a legacy architecture and creation of a new policy is

evaluated by the two methods. In the first method reconfigurability is evaluated based

on the change in size of the credential set that comprise the ABAC policy when new

operations are added or the inclusion of a new role. In the third method extensibility

is evaluated by analyzing the change in size of the ABAC credential set when new

federate members join the federation. For extensibility two cases are considered. The

first case assumes that each new Manager has an identical policy set as to a previous

Manager in the same class. In the second case, each Manager is assumed to have a

unique or distinct policy compared to other Managers in the same class. These two

cases can be considered boundary cases.

If the rate of policy set size scales linearly or sub-linearly, then the complexity of

the ABAC policy also scales linearly. Thus if policy can maintain linear growth as

complexity increases then the policy could remain maintainable. Specifically, policy

must remain maintainable for factors of reconfigurability, scalability and extensibility.

Each of these factors are evaluated in this section. Finally, it is considered that the

lower the percent change in trace length, the less legacy code was touched and the

greater separation of ABAC access control mechanism from legacy infrastructure.

2.5.2 Reconfigurability Evaluation

Reconfigurability of the ABAC policy defined in this study is illustrated through the

increase in credential policy size. Increase in complexity of the policy is denoted

through the percent change relative to the core structure of the policy. The results

can be observed in Table 2.9.

As observed, the results illustrate linear growth in policy complexity as the in-

frastructure scales linearly. However, it can be noted that the rate of growth for the

www.manaraa.com

38

Table 2.10: Extensibility: Change in Credential Set Size
Policy Size (bytes) for N Unified Managers

Manager 0 5 10 15 20

SM 2542 5084 7626 10168 12710
RM 2542 5084 7626 10168 12710
CM 2542 5084 7626 10168 12710
AM 2542 5084 7626 10168 12710

Normalized
Difference

2542 1016.8 762.6 677.9 635.5

Percent
Growth

- -60% -22.67% -11.11% -6.67%

SM is 6.52%, the RM 5.67%, the CM 6.69% and the AM 6.81%. It is observed that

as the number of operations per manager doubles, the complexity of the policy only

increases by an average of 6.42%. From these results, it can be asserted that the

ABAC policy enhances reconfigurability of a legacy distributed infrastructure.

2.5.3 Extensibility Evaluation

Evaluation of the ABAC policy to enable extensibility is illustrated by analyzing

the change in policy set size by adding new members to the Federation. Analysis is

divided into two scenarios that can be considered boundary cases. The first boundary

case assumes that the addition of the new Manager implements the same policy as

all existing managers and thus the policy certificates can be reused. The Second

scenario, assumes every new Manager implements a mutually exclusive policy to all

Managers already within and added to the system. In this case, policy certificates

cannot be reused and increases the credential graph complexity in the ABAC policy.

For these calculations the creation of new implicit trust relationships required to

form the mapping of roles across federate members is evaluated. The results for the

first part can be observed in Table 2.10 and the second part of the evaluation in

Table 2.11.

As observed in Table 2.10 the complexity of the ABAC policy grows at a rate less

than a linear growth as new Members join the federate and existing Managers trust

the new federate Manager. In this scenario, attribute certificates in the credential

chains can be shared among each Manager. This results in a policy size increase of

508.4 bytes per manager. In Table 2.11 the complexity of the ABAC policy grows as

www.manaraa.com

39

Table 2.11: Extensibility: Change in Credential Set Size
Policy Size (bytes) for N Distinct Managers

Manager 0 5 10 15 20

SM 5614 28492 79332 155592 257272
RM 5614 28492 79332 155592 257272
CM 5614 28492 79332 155592 257272
AM 5614 28492 79332 155592 257272

Normalized
Difference

5614 5698.4 7933.2 10372.8 12863.6

Percent
Growth

- 1.50% 39.22% 30.75% 24.01%

www.manaraa.com

40

a function of multiple mutually exclusive policy sets. In this scenario, it is assumed

that each new Manager implements its own policy and thus no attribute certificates in

the credential chains can be shared. Thus, it can be observed that the linear growth

of 5084 bytes is attributed to implementing a complete new policy per manager.

When comparing Table 2.10 to Table 2.11, the shared attributes reduce the re-

quired policy size by 90% per manager. These results demonstrate that for each new

distributed infrastructure that, join the federation, the rate of complexity increase is

less than an the m:m mapping of explicit trust relationships. By these results, it can

be asserted that the ABAC policies improves extensibility of the legacy distributed

architecture.

2.6 Conclusion

This case study investigated the feasibility of integrating ABAC into a legacy archi-

tecture. As demonstrated, it is feasible to integrate ABAC into a legacy architecture.

Furthermore, ABAC, through its inherent properties and capacities, can enhance a

legacy architecture by factoring policy from implementation. Additionally, it can

be observed that components may be decoupled from each other to form mutually

untrusting entities. This in turn results in a more scalable, modular and reconfig-

urable architecture where access control places no limits upon the architecture and

were policy may evolve independently from access control mechanism. Therefore, it is

concluded that ABAC is a suitable mechanism for fully subsuming the access control

requirements of an enterprise legacy architecture. The question still remains if ABAC

can be a suitable mechanism for fully subsuming the access control requirements of

a modern architecture that is continually evolving, growing and changing access con-

trol requirements. The investigation of this question and a case study is found in

Chapter 3.

www.manaraa.com

41

Chapter 3

Case Study 2: ABAC Integration

for Proprietary Architectures

3.1 Introduction

One primary challenge associated with proprietary distributed systems is intellec-

tual property rights. In particular, many proprietary and open source licenses are

incompatible. For example, the Mozilla Public License and the Apache License are

incompatible with GPL-2. These licensing restrictions may make adopting some ac-

cess control mechanisms into open source systems and proprietary systems difficult

within existing legal frameworks. To illustrate this issue in a relevant context, the

following case study investigates the integration of Attribute-Based Access Control

(ABAC) into a proprietary commercial distributed system known as the GeoAnalyt-

ical Grid Engine (G2E).

The G2E framework is a proprietary framework that implements licensing such

that any modifications or changes to the code base results in a transfer of ownership

from the software library to be integrated to the owner of the distributed system. This

inherent legal constraint is incompatible with the open source licensing of the ABAC

libraries. Therefore, the full access control features embedded within the ABAC

grammar and library must be exposed to this framework without ever modifying the

architectures implementation. This restriction may significantly inhibit scalability,

modularity and manageability of the architecture and the access control framework.

The question is, how can ABAC be integrated into such a system while satisfying

these legal requirements? This is by no means an easy question to answer; however

www.manaraa.com

42

logically the core requirement that ABAC must be integrated as a separate system

from the code base. Research and legal analysis have demonstrated that when in-

terfacing systems and components through APIs, legal constraints of licenses do not

interfere [15]. The distributed system is then considered as a collective work and is

treated as separate modules under copyright law. Therefore, the requirement is that

ABAC must be integrated as a separate module from the distributed system in ques-

tion and provide no direct hook into running processes of that system. This solution

solves the problem of licensing restrictions but raises issues of scalability, modularity

and manageability remain. This case study investigates how ABAC libraries and

policies can be adaptive to satisfy these requirements in a proprietary system.

Section 3.2 describes the proposed access control architecture. Section 3.3 investi-

gates mechanisms to support inter-component communication and proposed API to

facilitate the architecture. Section 3.4 describes a set of proposed policies required

by the G2E framework to support corporate customer requirements. Section 3.5 pro-

vides an overview of of the qualitative results based on this case study. Finally in

Section 3.5 conclusions are made based on the results from this case study.

3.2 G2E Introduction

3.2.1 Access Control Architecture

As noted in the previous case study, ABAC is a certificate-driven authorization and

authentication system that relies on attribute certificate chain delegation to estab-

lish relationships between contextual symbols that are asserted through certificates.

Policies are constructed by assigning semantics to each attribute certificate and then

inter-connecting these attribute certificates to establish relational referencing between

semantics. The result is a set of attributes linked through certificate assertions that

describe or relate to a set of policy requirements for a given distributed system. In this

context, policy is a data map over a generic library that facilitates policy querying,

credential verification and credential validation.

The first case, found in Chapter 2, demonstrated that it is indeed feasible to

integrate ABAC into a legacy architecture. As noted, ABAC has the potential to

subsume all access control requirements of a modern architecture. However, to assert

this claim, similar analysis is performed in this case study. It should be noted that

this case study differs from the case study in Chapter 2 in one fundamental way:

www.manaraa.com

43

the PlanetLab architecture was an open source project and the G2E architecture is

proprietary. This problem is outsides of technical feasibility issues. Specifically, it has

been demonstrated that many open source licenses are compatible with each other.

However, in general, open source licenses (apart from academic licenses such as Free

BSD) are incompatible with proprietary licenses. This case study defines methods

such that technical challenges of integrating ABAC into a modern proprietary archi-

tecture can be overcome and how licensing restrictions for many enterprise systems

can be addressed.

3.2.2 Avoiding Licensing Restrictions

For many years licensing restrictions in open source and proprietary software applica-

tions have been researched. One solution proposed by Dr. German et al. to overcome

issues of licensing restrictions is through component interfaces [15]. More specifically,

if two software components can be interfaced through an API and in some cases dis-

tributed as separate modules, the resulting aggregation is not considered a derivative

work. Not being classified as a derivative work is necessary to ensure there is a clean

separation of licensing terms. Based on this core principle, the formulation of an

approach to integrating ABAC into G2E materializes.

To integrate ABAC into a proprietary system, the facilities and capacities of

ABAC must be implemented as an external component. As seen in the first case

study in Chapter 2, the ABAC libraries and policy can be directly integrated into the

SFA framework. However, when considering the G2E architecture, this is not possible.

Hence, component specific or localized access control is not feasible. Therefore, all

complexity associated with policy design, deployment, and querying must be done in a

separate component that may be located either remotely or locally. The formal design

process is described in Section 3.3. Unlike the first case study, the G2E architecture

is an architecture under constant evolution. Furthermore, it has been designed with

no mechanism or system to facilitate policy, access control or client management.

Therefore, the G2E architecture provides an excellent starting point to evaluate the

integration of ABAC into modern architecture from the ground up. The next section,

Section 3.3, details the process to design this access control architecture.

www.manaraa.com

44

3.3 G2E Architecture and Design

Access control designs for the G2E architecture can be classified into two primary

categories: User Context Access Control (UCAC) and Server Context Access Con-

trol (SCAC). From previous work integrating ABAC into distributed architectures,

SCAC has demonstrated greater potential for scalability by factorizing the access

control context. UCAC aggregates policy to a centralized location which is usually

an authentication server, and SCAC distributes policy to each component within a

distributed architecture. By distributing policy between each component, policy is

factorized, resulting in smaller policies to manage and a distribution of demand for

access control resources.

To illustrate these concepts in a more concrete way, consider a website that re-

quires username and password authentication. This website provides a single authen-

tication page for all of its components and features. Furthermore, this website employs

a database that contains all registered users of the site. Therefore, when a user au-

thenticates against the credential store or database, the entire data set is analyzed.

Once authenticated the user may access any of the website resources. This form of

access control is classified as UCAC. An example of UCAC is as follows, consider a set

of web services where each component(web service) or feature has an authentication

page. If a user desires to access the upload file resource, the user authenticates with

this resource. Once authenticated, the component generates a context token denot-

ing the users credentials within the system. If this user accesses a different resource,

the authentication token is passed to this new resource and the user is authenticated.

Furthermore, each component within the architecture can harness this same function-

ality to authenticate among themselves to assert such mechanisms as mutual trust.

Server contextual assertion is critical for establishing federated systems. Federated

systems are such that mutual trust can be established between potentially untrust-

ing components through certificate verification and validation. These features also

enable servers to act as a proxy on behalf of a user through delegation similarly to

the PlanetLab case study.

ABAC may be used as either a UCAC or SCAC authentication architecture but

is better suited for SCAC due to properties in its grammar and implementation.

Therefore, each component of the G2E architecture will authenticate against the

ABAC access control server asserting both identity and permission to carry out a

specific operation. This prevents a hijacked component from carrying out malicious

www.manaraa.com

45

Figure 3.1: G2E Access Control Architecture

operations that vary from intended operation. For example, the Java Server in G2E

which houses Rasterization and Sync applications will have to authenticate against the

Storage server’s policy to assert they have permission to write to the database. This

prevents a compromised G2E Web Server from running queries against the database.

To illustrate this design, the G2E architecture is defined in Figure 3.1.

As observed in Figure 3.1 each of the G2E components are decoupled from one

another. Therefore, an ABAC driven policy would likewise be minimized and decou-

pled from bi-directional trust relationships for each components API. The proposed

ABAC implementation is partitioned into three components: (1) ABAC-Server, (2)

ABAC-Proxy and (3) ABAC Client Interface.

The ABAC-Server is the primary access control server in the proposed architec-

ture. This server provides one primary interface that utilizes HTTPS and a RESTful

request/response API. The ABAC-Server is responsible for maintaining access control

policies for a given access control context and performing access control queries using

the ABAC libraries. An access control context is an instance of ABAC and associated

utility libraries that facilitate authentication and authorization requests. Specifically,

every component in a given architecture can request or register with the server to

www.manaraa.com

46

request space to maintain an access control policy for the requesting component. A

clean RESTful API is provided to integrate with this server and is described later in

Section 3.3.2.

The next major component in the ABAC architecture is the ABAC-Proxy. The

ABAC-Proxy can either be directly integrated within a proprietary architecture if

licensing restrictions allow, or it can be instantiated on a server (local or remote).

The ABAC-Proxy contains all necessary libraries and utility functions to easily for-

malize HTTPS RESTful requests to the ABAC-Server. Additionally, the ABAC-

Proxy provides libraries for processing an API response. It should be noted that the

ABAC-Proxy is not required to interact with the ABAC-Server. Any mechanism that

implements HTTPS RESTful requests may make calls to the ABAC-Server. How-

ever, utilizing the ABAC-Proxy simplifies implementation through a clean API and

prevents direct attacks on the ABAC-Server. It should be additionally noted that

the ABAC-Proxy also supports an XML-RPC interface over SSL. The XML-RPC in-

terface over SSL is utilized when the proxy is run as a separate module or externally

to an architecture such as G2E. A third module called the ABAC Client Interface

forms XML-RPC communication architecture with the ABAC-Proxy from within a

proprietary architecture such as G2E.

The ABAC Client Interface is a lightweight module that implements a basic XML-

RPC interface to the ABAC-Proxy. The ABAC Client Interface (ABAC CI) is li-

censed under an academic license and can be freely incorporated into any architecture

whether open source or proprietary. The ABAC CI supports an API that is mirrored

by the ABAC-Proxy and the ABAC-Server to maintain consistency in functionality

throughout the access control architecture.

Finally, these three architectural components that comprise the ABAC access

control framework for G2E can be arranged in numerous configurations based on the

demand and requirements of a given architecture. The first of these configurations

can be observed in Figure 3.2.

The architectural configuration observed in Figure 3.2 illustrates a centralized

access control server. Each component, Database Server and two G2E-GUI instances

communicate with the same access control server. Each component instantiates the

ABAC CI object which then communicates with a local ABAC-Proxy instance that

runs in the same physical server. Each ABAC-Proxy interfaces with the ABAC-

Server. The ABAC-Server constrains a unique Access Control Context (ACC) for

each registered component. Concerns become apparent relating to scalability as more

www.manaraa.com

47

Figure 3.2: G2E ABAC Configuration: Centralized

www.manaraa.com

48

Figure 3.3: G2E ABAC Configuration: Distributed

components are added. This architectural concern can be eliminated by following the

next architectural design in Figure 3.3.

As observed in Figure 3.3, each component places requests to a unique ABAC-

Server. This architectural design demonstrates that scalability can be achieved by

decoupling access control clients from the access control server. It should be further

noted that the factorization of policy implemented in case study 1 in Section 2 is

maintained through ACCs. One concern that arises over the architecture proposed

in Figure 3.3 is demand for compute resources. Specifically, as the architecture scales

so does the demand for physical servers. By factorizing policy among many ABAC-

Servers, the potential for wasting compute resources is high. Therefore a third access

control architecture is proposed as noted in Figure 3.4.

Figure 3.4 illustrates a hybrid approach based on the last two configurations, where

any component may chose to register with any given ABAC-Server. Thus an architec-

ture can be designed to satisfy any architectural requirements. Additionally noted in

Figure 3.4, the mechanism by which the ABAC-Proxy can be directly integrated into

www.manaraa.com

49

Figure 3.4: G2E ABAC Configuration: Hybrid

www.manaraa.com

50

the G2E architecture is also illustrated. However, this configuration is only provided

for demonstration purposes and is not feasible due to licensing restrictions.

One final aspect of the ABAC architecture not depicted in the diagrams above is

the locality of the ABAC-Proxy. In all architecture above, the ABAC-Proxy resides

on the same physical machine as the client component of the G2E architecture. The

ABAC-Proxy may be relocated to any physical and remote server as long as the

ABAC CI correctly points to the right proxy and the ABAC-Proxy points to the

right ABAC-Server.

Based on the architecture as described, a more detailed analysis of Figure 3.1

can be investigated. In Figure 3.1, dotted lines denote the functional dependency

between components and the solid arrow lines denote functional dependency on a

given authentication request. The authentication flow is illustrated by the following

example. If the Java Application Server desires to make a query on the Storage Server,

the Java Application Server (JAS) makes a request through the Storage Server API.

The Storage Server obtains the Java Application Servers credential through operation

request. The operation identifier and the JAS credential are submitted to the ABAC

Access Control Server (ACS) with the Storage Server credential. The ACS queries

the ABAC policy and a response is given back to the Storage Server if the JAS has

permission to run that particular query. In addition to the denoted access control

flow example, user credentials are similarly processed. For example, if a user makes

a request to query for some data, the user submits their credentials at the G2E Web

Application along with their desired request. As in the previous example, the G2E

web application obtains a response from the ACS if the user has permission to execute

the requested operation. Once the request has been validated the JAS acts on the

user’s behalf to execute the query. The JAS authenticates with the Storage Server

as per the first example. These examples illustrate how policy is factorized among

each component. Specifically, when the G2E Web Application authenticates against

the ACS, only the policy for the G2E Web Application is analyzed. The JASs policy

is similarly factored from the G2E Web Application. Therefore, each component’s

policy may be modified without being concerned about functional policy constraints

between other components.

The final significant alteration to the G2E architecture to facilitate ABAC, is mod-

ifying the graphical user interface (GUI). To integrate ABAC into the G2E GUI, the

architecture was analyzed and several major modifications were implemented. The

G2E GUI component was analyzed for the API used to interact with other compo-

www.manaraa.com

51

nents within the architecture. The identified API or interface was the Query Java

class. This class facilitated a generic mechanism for formulating queries on the G2E

data set which included satellite images. The satellite images contained metadata

that described the image contents including region, location and classification. The

Query class additionally provided a mechanism such that multiple requests could be

combined using Boolean logic including, but not limited to, AND,OR and NOT. This

metadata proved essential for associating request data with an access control pol-

icy. Therefore, the servlet that handles query processing was modified to include an

instance of the ABAC CI module that makes authentication requests based on the

given query composition.

If a response from the ABAC CI authenticate method returns true then the al-

gorithm proceeds to server the request. If the authenticate method returns false, an

exception is thrown based on the given request criteria. In addition to location-based

request criteria, the primary stakeholder in the G2E project also requested for au-

thorization based on User location and subscription status. The formal policy as

requested is detailed in Section 3.4.

The final primary modification to the G2E system was the notion of binding a

Query action to a client credential. Therefore a login/logout process was imple-

mented. In the rudimentary form of this mechanism, a client may upload an ABAC

certificate into the G2E framework. When a query is made, the client credential of

the user currently logged in is passed to the authentication method servlet side for

authentication based on the given query parameters. The next section investigates

choice of technology and mechanisms related to Inter-Component Communication.

3.3.1 Inter-Component Communication

Several core technologies have been considered as a medium to facilitate communica-

tion between G2E components and ABAC access control facilities. These technologies

are Remote Procedure Call (RPC) and HTTPS. Both core technologies enable com-

munication over an SSL tunnel. In the case of RPC, an SSL connection is established

to the access control server through a socket; a request and parameters are serialized.

The remote end de-serializes the request and parameters, and immediately carries

out the subsequent requested operation. In the case of HTTPS, requests are made

through POST requests in the HTTP protocol through an SSL tunnel established

with a web server. The HTTP request is managed according to the implementation

www.manaraa.com

52

of the protocol server-side. Both methods provide the necessary mechanisms to fa-

cilitate inter-component communication; however RPC has one primary limitation.

This limitation is a reliance on client side implementation of the RPC framework.

With regards to the licensing restrictions, any modification to the code base of G2E

transfers ownership of these modifications to the distributed architecture. Therefore,

any client-side RPC mechanism would come under the ownership of the G2E archi-

tecture. The corresponding RPC client libraries can be developed under the G2E

architecture license if required. If more than one distributed architecture utilizes the

ACS, then each client may implement a different RPC mechanism utilizing a different

technology.

HTTPS however provides an important contrast to these concerns. Specifically,

HTTPS requests can be formed with minimal effort client-side and be easily requested

through utilities such as Curl, scripts or integration with the Java runtime in the case

of G2E. HTTPS has been chosen as a primary medium for access control requests. In

this case, REST or a RESTful architecture has been chosen as a design paradigm for

subsequent requests. This REST style has been chosen because of its innate notion

of loose coupling, client architecture, resource-driven semantics and stateful represen-

tation. This is particularly important in the context of access control. In particular,

each operation and corresponding access control request denotes a transition within

the client state. This notion of state fits well with the ABAC notion of negotia-

tion. In particular, ABAC allows an authenticating client to make subsequent access

control request using different credential sets. Furthermore, a client may append dif-

ferent credentials to the request to assert different types of access within the system.

Comparably, REST allows for a client to assert an increasing degree of refinement

with regards to credential choice with respect to an access control resource. For ex-

ample, a client can make a request comparable to: ACS/operation/base credential

/server specific credential/operation specific credential. The corresponding design of

a REST-driven architecture combined with ABAC access control mechanisms is de-

tailed in subsequent sections.

The technology chosen to facilitate this functionality is as follows. Python has

been chosen as the language of preference because of its wide interoperability with

many distributed systems. With respect to previous work integrating ABAC into

PlanetLab, Python was the language of choice, therefore many of the required libraries

and features are already implemented. To facilitate web-based requests Django is

used due to its stability and wide-scale deployment. Django also provides a desirable

www.manaraa.com

53

View-based architecture to facilitate potentially high volume access control requests.

Finally to enable a REST-based style, the Django REST Framework is used. The

Django REST Framework overcomes some limitations with comparable Django REST

projects such as Tasypie and Piston. Then the ABAC wrapper is integrated into the

Django server context which in turn loads the libabac library written in C. The ABAC

wrapper is written in C and enables an interface to C through SWIG. The libabac

libraries utilize strongSwan for cryptographic functions and features. Requests are

made through HTTPS utilizing a RESTful style.

3.3.2 API

The ABAC Access Control Server (ACS) implements a set of APIs that defines key

characteristics of how clients may interact with related resources. These APIs and

their associated descriptions are defined in the Table 3.3.2.

These API denote core functionality presented to servers and clients within a

distributed architecture. All of the complexity associated with access control resides

within the policy map within the ABAC context. This enables a clean API to be

presented as described above and reduces complexity. The next section details the

manageability and scalability of the ABAC Access Control Server with respect to the

G2E architecture.

Based on this in-depth analysis of the G2E architecture, the subsequent section

details the formal policy designed to support policy requirements of the primary

stakeholder in the G2E project.

3.4 Formal Client Access Control Specification

3.4.1 Policy

The following formal policy defines the set of all policy elements and their relation-

ships with respect to the formal access control requirements requested by Biosphere

Management Systems Inc. This section is partitioned into two policies, the Client Ac-

cess Control Specification (CACS) and the Architecture Access Control Specification

(AACS).

The CACS defines the formal policy that controls and facilitates authorization and

authentication of human actors within the system. This formal policy further specifies

www.manaraa.com

54

Table 3.1: ABAC Server REST API
API Description
RegisterContext(UUID,
credential, type)

A server can use this API to register its identity with the
ABAC Access Control Server. This operation creates
an access control context by which it can subsequently
query the policy against a credential set. The UUID is
a unique identifier of the server, type denotes associated
meta data for logging, and the credential denotes the
principal credential of the system.

LoadPolicy(UUID, creden-
tial, policy)

A server may use this API to load a policy governing
a set of resources controlled by the server referenced
by the associated UUID. The UUID parameter denotes
the unique identifier of the server context instance, the
credential parameter denotes the server’s previously reg-
istered credential, and the policy denotes the set of at-
tributes that comprise the servers policy. The credential
in this API is used both to associate a policy with the
server credential context and to authorize the request.
The policy additionally contains attributes that have se-
mantic operations bound to them within the certificates.

Authenticate(UUID, cre-
dentials, operation)

The Authenticate API is the primary mechanism by
which both clients and servers are authenticated within
the context of another server. In this case, the parame-
ter UUID denotes the unique identifier of the server that
owns the access control policy in context, the credentials
attribute stores both the requesting client or server and
the credential of the owner of the policy, and the oper-
ation parameter denotes the requested operation of the
client or server.

DeletePolicy(UUID, cre-
dential)

Similar to the LoadPolicy operation, the DeletePolicy
API will delete all policy attributes associated with a
given server context. This enables a server to load a
new policy in place of the old policy or a policy maybe
deleted to take the server out of commission. Once again
the UUID denotes the unique identifier of the server
context and the credential parameter is the credential
associated with the access control context of the server.

UnRegisterContext(UUID,
credential)

UnRegister API deletes a server’s access control context
from the ABAC server. This API is used if a server is
decommissioned or removed from operation. UUID is
the unique identifier of the access control instance and
the credential parameter is the credential of the server
associated with the access control context.

www.manaraa.com

55

Table 3.2: ABAC Server REST API
API Description
RegisterUser(UUID, cre-
dential, role)

RegisterUser API delegates a role specified by the role
parameter and delegates the role to the user credential
specified by the credential parameter. The UUID is a
unique identifier that references a unique access control
instance. The delegated role must exist within the UUID
context specified. The delegate role is only valid within
the specified UUID access control instance.

UnRegisterUser(UUID, cre-
dential, role)

UnRegisterUser API removes a role specified by the role
parameter and delegates the role to the user credential
specified by the credential parameter. The UUID is a
unique identifier that references a unique access control
instance. The un-delegated role must exist within the
UUID context specified.

www.manaraa.com

56

filtering mechanisms on a variety of access control attributes. Many different mutually

exclusive attribute sets are evaluated sequentially. Failing one access control query

will result in an authentication failure. This authentication mechanism can further be

expanded to support multi-criterion logging and feedback mechanisms. For example,

if a client or human actor fails at authenticating based on resident country but belongs

to the correct association, then an authentication exception will be thrown specifying

an incorrect delegation of credentials.

AACS encompasses mechanisms of access control solely within a federated Cloud

infrastructure. AACS enables policies to be further partitioned by separating policy

that governs data from policy that governs architecture. The AACS policy protects

infrastructure components at an inter-procedural level. This prevents compromised

system components from interacting with other components in ways not defined by

the enforced policy.

The AACS and the CACS policies are defined within this section. Each policy

includes an Index field and a Hierarchy Link field. Every table has a key and using

the Hierarchy Link field, the policy map can be followed to another policy table. By

this method, both a formal policy and ABAC attribute hierarchies can be modeled.

When considering the case study presented in Chapter 2, a formal policy was already

created so the method only required abstracting a preexisting policy into an ABAC

grammar. This differs from present case study where a modern architecture does not

have a formal access control policy. Instead, creation of both a formal policy and an

ABAC policy is required.

3.4.2 Client Access Control Specification

The Client Access Control Specification defines the policy that governs user interac-

tion with the G2E architecture. Any user registered with the system is associated

with a set of metadata that describes properties and permissions of that user.

This metadata can include elements such as location, organization, subscription

status and role. Similarly, data (satellite data) is also associated with metadata. By

binding metadata and user data into a policy, an ABAC bi-directional search can be

performed to evaluate if a user has access to the specified data resource.

The primary stakeholder for the G2E project has set two primary requirements:

(1) the association of users with subscription status and data with subscription infor-

mation and, (2) the association of users with geo-location and data with geo-location.

www.manaraa.com

57

Requirement (1) enables data to be partitioned based on a subscription model to the

service. Requirement (2) allows for users to be restricted from potentially sensitive

data based on their association with a geo-location. The policy specification in this

section describes the implementation of requirement (1) and (2) into an ABAC gram-

mar and formal policy specification.

Table 3.3 defines the set of system roles associated to users within the G2E ar-

chitecture. Each role is associated with a subscriber status following the Hierarchy

Link column. Each user is also associated with geo-location metadata such as Cana-

dianCitizen or RussianCitizen.

Table 3.4 defines the subscriber status that is bound to the client credential. Each

client credential may be bound to one subscriber status. This policy specification

satisfies requirement (1).

Table 3.5 defines a mapping of subscription and access classes to data within the

G2E architecture. The access level then maps to the policy map layer associated with

a subscription status. This policy specification satisfies requirement (1).

Table 3.6 defines a set of attributes that are bound to an entity credential. This

policy specification satisfies requirement (2).

Table 3.7 defines a set of geo-location data that may be bound to the client

credential and the data. This policy specification satisfies requirement (2).

Table 3.8 defines a set of organization-based metadata that may also be bound

to a client credential and data within the G2E architecture. This policy specification

satisfies requirement (2).

Table 3.9 defines the primary data (satellite image) quality bound to a subscriber

status. Thus, subscriber status can determine the quality of data a user may access.

This policy specification satisfies requirement (1).

Table 3.10 defines a set of account classifications that enable a degree of user

management. For example, if a user is awaiting approval to gain access to a set of

resources, the account can be temporarily locked.

Table 3.11 defines a set of attributes that are bound to the dataset in the G2E

application that allows filtering on any give set of attributes. This policy specification

satisfies requirement (2).

Table 3.12 defines a set of operations within the G2E architecture that a user can

perform. This set of operations can be expanded as the architecture evolves. Only

one operation within the architecture was defined: Query. A Query operation was

defined that requires multi-variable access control logic to be evaluated for successful

www.manaraa.com

58

Table 3.3: System Roles (KEY = SR)
Index Role Description Hierarchy

Link
0 User An entity within the system that has

basic access throughout the system.
This user only has read access when al-
lowed. Access is not limited to specific
systems.

SS.1.(0-3),
EA.(0-3),
ES.(0-3)

1 Manager An entity within the system that has
read access and limited write access.
This role is a Superuser compared to
a User. A Manger only has write ac-
cess to a given project the manager is
associated with.

SS.1.(0-3),
EA.(0-3),
ES.(0-3)

2 Director An entity within the system that has
read and write access. This role is a
Superuser compared to a Manager. Ad-
ditionally noted, a Director only has
write access to a given project the Di-
rector is associated with.

SS.1.(0-3),
EA.(0-3),
ES.(0-3)

3 Intelligence An entity within the system that has
unlimited read access. This entity also
has the capacity to delete and modify
images in a limited and controlled way.

SS.1.System,
EA.(0-3),
ES.(0-3)

4 TechnicalContact An entity within the system that has
read access. This entity role also has
the ability to restart infrastructure.

SS.1.System,
EA.(0-3),
ES.(0-3)

5 Administrator Is the Superuser within the system and
has no restricted access.

SS.1.System,
EA.(0-3),
ES.(0-3)

www.manaraa.com

59

Table 3.4: Subscriber Hierarchy (KEY = SS)
Index Subscriber

Status
Description Hierarchy Link

0 UnSubscribed (Subscribed0) This attribute identifies the en-
tity within the system is unsub-
scribed. This attribute is mutu-
ally exclusive with SS.1 and SS.2

1 Subscribed (Subscribed1) This attribute identifies the entity
within the system is subscribed
with basic service. This attribute
is mutually exclusive with SS.0
and SS.2

2 Premium (Subscribed2) This attribute identifies the entity
within the system is subscribed to
premium services. This attribute
is mutually exclusive with SS.0
and SS.1

3 Contributor (Subscribed3) This attribute can be delegated
in addition to (0-1) to denote the
entity makes contributions to the
the data store. Additional filter-
ing may occur on this attribute;
for example, because a contribu-
tion has been made, temporary
access can be delegated as a mon-
etary reward or enticement.

4 System (Subscribed4) This attribute identifies the en-
tity requesting access to a par-
ticular resource is a system en-
tity. This can include person-
nel such as a TechnicalContact in
SR.1 and priority access can be
delegated.

www.manaraa.com

60

Table 3.5: Access Class Map (KEY = ACM)
Index Access Level

Mapping
Subscriber
Status

Description Hierarchy
Link

0 Public SR.(0 -5) Anyone can
access this
resource.

DL.(0-1)

1 Subscription SR.(0 -5) Paid sub-
scribers

DL.(0-2)

2 Premium SR.(0 -5) Premium
subscribers

DL.(0-3)

3 Private SR.(2,3,5) Only in-
telligence
agencies,
an Admin-
istrator or
directors of
a specific
project may
view this
data.

DL.(0-2)

4 Restricted SR.(3,5) Only in-
telligence
agencies and
the Admin-
istrator may
view this
data.

DL.(4)

5 Classified SR.(3,5) Only in-
telligence
agencies and
the Admin-
istrator may
view this
data.

DL.(4)

www.manaraa.com

61

Table 3.6: Entity Attributes (KEY = EA)
Index Entity At-

tribute
Description Hierarchy

Link
0 Country The country(ies) the entity is affiliated

with.
CC.(0-2)

1 Organization The organization(s) the entity is affili-
ated with.

ORG.(0-2)

2 Status The current status of the user within
the system (active, locked). Active sta-
tus would imply the entitys account is
not locked. A locked account would im-
ply the entitys account is locked and
unable to access elements within the ar-
chitecture.

ES.(0-3)

3 Role Denotes an associated role defined in
SR.

SR.(0-5)

Table 3.7: Country Code (KEY = CC)
Index Country Description Hierarchy

Link
0 Canada Canada NULL
1 USA United States of America NULL
2 Russia Russian Federation NULL

Table 3.8: Organization (KEY = ORG)
Index Subscriber

Status
Description Hierarchy

Link
0 None No organization NULL
1 BC Forest Min-

istry
BC Forest Ministry NULL

2 Russian Forest
Ministry

Russian Forest Ministry NULL

www.manaraa.com

62

Table 3.9: Data Layering (KEY = DL)
Index Data Imagery

Layer
Description Hierarchy

Link
0 VeryLow Low resolution imagery (50 km x 50

km)
SS.0

1 Low (Primary) Low resolution imagery
(25km x 25 km)

SS.0

2 Medium (Primary) High resolution imagery by
square kilometer or by hectare (small
number of samples only)

SS.1

3 High (Primary) High resolution imagery by
sq kilometer or by hectare (medium
number of samples only)

SS.(2,3)

4 VeryHigh High resolution imagery by square kilo-
meter or by hectare (high number of
samples)

SS.(4,5)

Table 3.10: Entity Status (KEY = ES)
Index Status Description Hierarchy

Link
0 Active The account is active and can be used. NULL
1 Review The account is currently under review,

waiting for authorization.
NULL

2 Locked The account has been locked and un-
able to be used.

NULL

3 Deleted The account has been deleted and no
longer exists.

NULL

www.manaraa.com

63

Table 3.11: Metadata Classification (KEY = MC)
Index Subscriber

Status
Description Hierarchy

Link
0 Country Filter access control based on country.

This attribute is compared to the entity
trying to access a resource.

NULL

1 Organization Filter data based on organization in
control over the region. This attribute
is compared to the entity trying to ac-
cess a resource.

NULL

2 Province/State
(Partition)

Filter data based on organization in
control over the partition. This at-
tribute is compared to the entity trying
to access a resource.

NULL

3 Forrest (Region) Filter data based on organization in
control over the region. This attribute
is compared to the entity trying to ac-
cess a resource.

NULL

www.manaraa.com

64

Table 3.12: Entity Operations (KEY = EO)
Index Status Description Hierarchy

Link
0 Query Run a query on the

dataset
NULL

1 QuerySubscribed Run a query on the
dataset if Subscribed

NULL

2 QueryPremium Run a query on the
dataset if Premium
User

NULL

3 QueryUnSubscribed Run a query on the
dataset if UnSub-
scribed

NULL

authentication against the data set. Three attributes were defined to subsume the

multi-variable query logic. These attributes can be observed in Table 3.12.

The Client Access Control Specification ensures that a client interacting with

the G2E architecture is only able to access the data restricted by requirement (1)

and (2). The next aspect of the policy specification for the G2E architecture is the

inter-component access control specification.

3.4.3 Architecture Access Control Specification

The Architecture Access Control Specification defines the policy by which components

in the G2E architecture may interact with one another. This policy specification also

defines a set of infrastructure level commands system administrators may use for

interacting with the architecture. These policy attributes only define a basic set of

operations but can be expanded as the architecture evolves.

Table 3.13 defines the policy specification for the Authentication Proxy. Oper-

ations within this policy can be delegated to the ABAC Client Interface for added

security.

Table 3.14 defines the policy specification for the ABAC-Server. This policy is

delegated to the Authentication Proxy to ensure that only a given Authentication

Proxy has access to the ABAC-Server. This access control constraint prevents other

components or entities within the architecture from directly querying the ABAC-

Server.

Table 3.15 defines the access control policy for the G2E Web Application. As

www.manaraa.com

65

Table 3.13: Authentication Proxy (KEY = AP)
Index Attribute Description Hierarchy

Link
0 Register Registers an ABAC context with the

ABAC-Server
NULL

1 LoadPolicy Loads an ABAC policy into a given
ABAC context at the ABAC-Server

NULL

2 Authenticate Authenticates a user credential against
the ABAC policy in a given context
stored within an ABAC context at the
ABAC-Server

NULL

3 DeletePolicy Deletes a policy from an ABAC context
stored at the ABAC-Server

NULL

4 UnRegister Deletes an ABAC policy and the
ABAC context from the ABAC-Server

NULL

Table 3.14: ABAC-Server (KEY = ABACS)
Index Attribute Description Hierarchy

Link
0 Register Registers an ABAC context with the

ABAC-Server
AP

1 LoadPolicy Loads an ABAC policy into a given
ABAC context

AP

2 Authenticate Authenticates a user credential against
the ABAC policy in a given context
stored within an ABAC context

AP

3 DeletePolicy Deletes a policy from a stored ABAC
context

NULL

4 UnRegister Deletes an ABAC policy and the
ABAC context

AP

www.manaraa.com

66

Table 3.15: G2E Web Application (KEY = G2E-WA)
Index Attribute Description Hierarchy

Link
0 None None G2E

Table 3.16: G2E Java Application Server (KEY = G2E-JAS)
Index Attribute Description Hierarchy

Link
0 Query Query G2E data G2E-WA

observed, no policy exists for access control as this is the entry point for the G2E

application. The G2E Web Application is the component that facilitates login/logout

and authentication processes. However, an ABAC policy can be added to this com-

ponent if requirements demand this capability.

Table 3.16 defines the access control policy for the Java Application Server. The

only operation currently supported by the G2E architecture is the Query operation.

This operation is delegated to the G2E Web Application which ensures only the Web

Application can execute this operation.

Table 3.17 defines the access control policy for the G2E Cache Services component.

Once again only the Web Application may query cached G2E data.

Table 3.18 defines the access control policy for the Rasterization service in the

G2E architecture. The Rasterize operation is delegated to the FTP-Server. However,

it should be noted that this operation is optional as the FTP Server must join the

federation to enable utilization of ABAC.

Table 3.19 defines the Store operation for the G2E Sync Application. The Store

operation is delegated to the Rasterization Application. Thus, only the Rasterization

Application may store rasterized images within the G2E architecture.

Finally, Table 3.20 defines the access control policy for the G2E Database Ap-

plication. As illustrated, there are two operations in this policy specification: Insert

and Query. The Insert operation is delegated to the G2E Sync Application and the

Table 3.17: G2E Cache Services (KEY = G2E-CS)
Index Attribute Description Hierarchy

Link
0 QueryCached Query cached data G2E-WA

www.manaraa.com

67

Table 3.18: G2E Rasterization Application (KEY = G2E-RA)
Index Attribute Description Hierarchy

Link
0 Rasterize Initiate rasterization of data files FTP-Server

Table 3.19: G2E Sync Application (KEY = G2E-SA)
Index Attribute Description Hierarchy

Link
0 Store Stores rasterized data into the G2E-

Database Application
G2E-RA

www.manaraa.com

68

Table 3.20: G2E Database Application (KEY = G2E-DA)
Index Attribute Description Hierarchy

Link
0 Insert Adds data to the G2E-Database Appli-

cation
G2E-SA

1 Query Queries the data in the G2E-Database
Application

G2E-JAS

Query operation is delegated to the G2E JAS component. This policy ensures only

the Sync Application may write to the Database and only the JAS may read. An

additional policy layer can be added to this policy specification to support a limited

write operation to allow the JAS component to update metadata. However, as the

G2E architecture is currently designed, such an operation is not supported.

The policy specification defined in this section demonstrates how restrictions can

be enforced at the infrastructure level between components. Furthermore, it should be

observed that these access control restrictions are not bi-directional. Specifically, each

infrastructure level access control requirement can be delegated to any component

or any number of components. This ensures that as new components of the same

type are added, policy is automatically delegated to each new component. Thus

scalability, modularity and extensibility can be achieved by factorizing policy among

each component. This result is comparable to that found in Chapter 2. The primary

difference between each ABAC system is distribution of the ABAC policy. In the

legacy system, ABAC policy was centralized at each component. In the modern G2E

architecture the factorization of policy is maintained in an access control context

stored at the ABAC-Server.

3.5 Results

One challenge associated with evaluating a given implementation and architecture is

metric choice. However, this case study investigates if it is possible to integrate ABAC

into a modern architecture. It has been demonstrated that ABAC was successfully

integrated into the G2E architecture and ABAC grammar has fully subsumed pri-

mary stakeholder policy requirements. Thus, the fact that ABAC can be used as a

primary access control mechanism for a modern architecture is evident by the cre-

ation, construction and design of the components, policy and mechanisms as outlined

www.manaraa.com

69

Figure 3.5: G2E ABAC Query Restriction: Canadian and Subscribers+

Figure 3.6: G2E ABAC Query Restriction: Premium and Subscribers

in this study. Evaluation is conducted using three methods: (1) proof of concept, (2)

performance and scalability metrics and (3) stakeholder review.

3.5.1 Proof of Concept

Proof of concept evaluates three primary principles required for successful integration

of ABAC into a modern architecture. These principles are: (1) ABAC can be inte-

grated into a proprietary system with licensing restrictions; (2) ABAC can facilitate

access control and fully encompass access control policy of a modern architecture

into an ABAC grammar; and (3) ABAC policy can be combined with mechanism

to provide fine grain control over large data sets. Method (1) is demonstrated by

existence of a working architecture; (2) is demonstrated by a working policy defined

within this case study; and (3) is demonstrated by evaluating use case models. An

example of these use case models can be seen in Figure 3.5. Figure 3.5 describes

access control requirements based on location and subscription status and Figure 3.6

describes access control decisions based only on subscription status. Each of these

figures represent a screen capture of a working G2E architecture where multiple users

may login and make requests using the Query structure.

As observed in Figure 3.5, access to geographical information on Harbour Por-

poises is limited to only Canadians who are Subscribers or Premium users denoted

by the +. In this scenario a Russian user is attempting to access restricted data.

As observed in Figure 3.6, access to geographical information on Bathymetry is

www.manaraa.com

70

limited to only Subscribers or Premium users. In this scenario, there is no geo-location

restriction imposed upon the data, only subscriber restrictions.

3.5.2 Performance and Scalability

In this section the performance and scalability of the proposed ABAC access control

solution created for G2E is analyzed. For ABAC to be a suitable primary access

control mechanism integration of ABAC should have minimal performance impact

on the architecture. Performance and scalability of ABAC and related access control

server architecture can be partitioned into two categories. These categories are (1)

credential operations and (2) architecture performance.

ABAC library and credential performance has been closely analyzed at Deter-

lab [9]. From the observed experimental results, ABAC policies grow linearly as

the complexity of the policy increases. Deterlabs demonstrated that fairly complex

policies remain sustainable for a high number of authentication and authorization

requests in a second. Specifically, for a credential policy of two hundred credentials,

ABAC can support approximately 30,000 valid queries and approximately 2,000,0000

invalid queries in one second. It should be noted that for repeated queries the cached

valued of the query result is stored to prevent re-querying the entire credential chain.

These results demonstrate how ABAC core libraries and credential systems can easily

scale of a high number of users per ABAC access control architectures. However, to

truly determine the performance and scalability of ABAC as a primary access control

system, the centralized access control system must be analyzed.

As mentioned previously, the access control architecture created for G2E consists

of several components: ABAC Access Control Server, Access Control Proxy and

Access Control Client. Evaluation of the ABAC access control architecture is divided

into several segments. The centralized ABAC Access Control server is first analyzed

using the RESTful API. Each API is evaluated over a 30 second interval and then

averaged on a one second interval. It should be noted that all experiments were

conducted using within a virtual machine. It should be noted that running the

ABAC Access Control architecture on a physical server may see an improvement

in performance.

The experimental results of each Access Control server API is detailed in Ta-

ble 3.5.2.

The average number of operations per second is detailed in Table 3.5.2. It should

www.manaraa.com

71

Table 3.21: ABAC Access Control Server Performance
API Average Number of Opera-

tions per Second
RegisterContext 1.01
LoadPolicy 4.6
Authenticate 202.3
DeletePolicy 198.67
UnRegisterContext 200.56

www.manaraa.com

72

be noted that all experiments were conducted two virtual processors, 2048 Megabytes

of RAM and a 8 Gigabyte virtual hard drive. The hard drive is in VMDK format and

the VM is run in VMWare Player. The host computer runs an AMD Phenom II X6

1055T processor clocked at 2.8 GHz, has 8 Gigabytes of RAM and has a 2 Terabyte

Western Digital Caviar Black.

Each operation was evaluated using a Python client program that comprised the

correct data and policy sets to utilize the ABAC server. Each Python program

attempted to carry out a maximum number of operations within a 30 second period.

Each Python script was run 10 times and the number of operations were averaged

across all runs. The results of these experiments can be observed in Table 3.5.2.

Despite the experiments running in a virtual machine, the observed results demon-

strate the ABAC server’s capacity to support a high number of concurrent users. It

should be noted that many ABAC servers can be deployed and load balanced to

satisfy demand for authorization and authentication.

3.5.3 Stakeholder Review

Evaluation of proof of concept Section 3.5.1 and scalability Section 3.5.2 are critical

for evaluating the feasibility of ABAC being used as a primary access control mecha-

nism for enterprise Cloud systems. However, for ABAC to be a success in commercial

enterprise architectures the decision makers and stakeholders must be convinced of

ABAC’s functionality, usability, manageability and requirements. Primary stake-

holders can have varying perspectives that differ at times drastically from technical

analysis. To investigate and affirm the support of enterprise and corporate customers

in ABAC-driven solutions, a survey has been devised. This survey was designed

to evaluate the success of satisfying primary stakeholder requirements of integrat-

ing ABAC into a modern architecture. The questions in this survey were carefully

created to determine the confidence in ABAC being a suitable and primary access

control mechanism for a modern distributed architecture under continual evolution.

The Table 3.5.3 illustrates the findings of the survey.

The survey illustrated in Table 3.5.3 details the responses from two critical project

stakeholders: the owner and primary enterprise stakeholder and the Platform Archi-

tect responsible for the design and development of the G2E system. It should be

noted that the two stakeholders belong to different organizations by which the G2E

www.manaraa.com

73

Table 3.22: G2E ABAC Survey
Survey Question Project

Stake-
holder

Platform
Architect

In your opinion, can ABAC describe the ac-
cess control policies required for a modern
software system?

10 8

In your opinion, can ABAC access control
mechanisms can satisfy the requirements of
a modern software system?

9 7

In your opinion, to what degree does ABAC
have advantages over traditional access con-
trol mechanisms?

9 7

In your opinion, how confident are you that
ABAC can evolve with a modern architecture
and continually satisfy system requirements?

8 7

In your opinion, how confident are you that
ABAC can scale as a system scales?

8 6

In your opinion, how easy are ABAC policies
to manage?

7 6

In your opinion, can ABAC be used as a pri-
mary access control mechanism in a modern
software system?

7 8

www.manaraa.com

74

system was developed under contract to the for the primary stakeholder. It should

also be noted that the level of expertise from a system design standpoint may differ.

When analyzing both sets of responses it can be observed that from the empirical

proof of concept, there is confidence that ABAC satisfies essential requirements to

fully subsume enterprise access control responsibilities. However, a larger survey pool

would increase the validity of these results.

www.manaraa.com

75

Chapter 4

Evaluation, Analysis and

Conclusions

4.1 Claims and Analysis

This thesis has endeavored to assess the claim that ABAC can fully subsume the

requirements of enterprise architectures. For ABAC to satisfy these requirements the

following core requirements must be satisfied: (1) policy requirements must be fully

supported by ABAC Grammar, (2) access control mechanisms must be interopera-

ble with enterprise architecture, (3) scalability, manageability and reconfigurability

must be satisfied and (4) ABAC must support both legacy and modern evolving

infrastructures.

To answer these four requirements two case studies were conducted. Each case

study sought to identify requirements (1), (2) and (3) in terms of (4), legacy and

modern architectures. As observed in the legacy architecture case study in Chap-

ter 2, legacy architectures can benefit from ABAC’s capacity to factorize policy. As

observed in the modern architecture case study found in Chapter 3, modern architec-

tures can incorporate licensing restrictions and experience continual evolution. Once

again ABAC was demonstrated to overcome both challenges by factorizing policy

to a single server and providing a minimal interface for authorization once again

abstracting policy complexity away from implementation.

In both case studies, (1) was demonstrated by the formalization of ABAC gram-

mars that fully support the policy requirements of the primary stakeholder. In the

legacy architecture case study, the formal policy was already defined. In the mod-

www.manaraa.com

76

ern architecture case study, policy was under continual evolution as the architecture

evolved. In both cases, an ABAC grammar was implemented and integrated into

both architectures.

In both case studies, (2) was demonstrated by development of required ABAC

libraries and integration of these software libraries into each respective architecture.

In the case of the legacy architecture, the modules were integrated directly into each

Manager. No licensing conflicts were observed as the licenses were compatible. In the

case of the modern architecture, licensing conflicts were evident but such constraints

were overcome by means of engineering a component-based access control architec-

ture (ABAC-Server architecture). In both cases fundamental principles of decoupling

policy from mechanism and components from each other was achieved, although by

different approaches. In the case of the legacy architecture, policy resided on each

physical computer. In the case of the modern architecture, policy was factorized in

the Access Control Context (ACC).

In both studies, (3) was demonstrated by achieving operability and allowing for

direct use and demonstration. In both cases, the policy, access control mechanism,

and inter-component interaction operated within the constraints of the formal spec-

ifications and stakeholder requirements. However, the integration of ABAC also re-

sulted in distinct modifications to architecture capacity and evolution. Specifically,

ABAC enabled the factorization of policy, the abstraction of policy from mechanism,

expanded capacity to federate and the factorization of implementation from policy.

Each of these unique capacities of ABAC directly correlate to expanded capacity of

the systems ABAC was integrated into.

4.2 Conclusions

As demonstrated in this thesis, ABAC can subsume all access control requirements of

the architectures described in these case studies. It has also been demonstrated that

architectures similar those outlined in these case studies can benefit from ABAC’s

grammars and interoperable access control mechanisms. ABAC eliminates many

inadequacies associated with access control mechanisms found in Section 1.5 with

respect to the architectures assessed in this thesis. ABAC instead provides an ex-

pressive grammar for constructing policies and applications to enterprise architectures

and a generic library that can be integrated into two classes of access control archi-

tectures as defined in this thesis. If architecture engineering requirements demand

www.manaraa.com

77

a secure, scalable, reconfigurable and manageable access control architecture, then

Attribute-Based Access Control can rise to this challenge.

www.manaraa.com

78

Bibliography

[1] 15th IEEE International Workshops on Enabling Technologies: Infrastructures

for Collaborative Enterprises (WETICE 2006), 26-28 June 2006, Manchester,

United Kingdom. IEEE Computer Society, 2006.

[2] 2006 International Symposium on a World of Wireless, Mobile and Multime-

dia Networks (WoWMoM 2006), 26-29 June 2006, Buffalo, New York, USA,

Proceedings. IEEE Computer Society, 2006.

[3] Antepedia. Openid. http://www.antepedia.com/detail/p/306232.html,

2013.

[4] David W. Chadwick. Understanding X.500 - the directory. Chapman and Hall,

1994.

[5] David W. Chadwick and Alexander Otenko. The permis x.509 role based privi-

lege management infrastructure. Future Generation Comp. Syst., 19(2):277–289,

2003.

[6] David W. Chadwick, Alexander Otenko, and Edward Ball. Role-based access

control with x.509 attribute certificates. IEEE Internet Computing, 7(2):62–69,

2003.

[7] deterlab. Abac access control for fedd. http://fedd.deterlab.net/wiki/

FeddABAC, 2012.

[8] deterlab. Abac authorization control model and discussion. http://groups.

geni.net/geni/wiki/TIEDABACModel, 2012.

[9] deterlab. Abac performance. http://abac.deterlab.net/wiki/

PerformanceData, 2012.

www.manaraa.com

79

[10] deterlab. deterlab. http://abac.deterlab.net/wiki/DocumentationRT2,

2012.

[11] DMFT. Role based authorization profile. http://www.dmtf.org/sites/

default/files/standards/documents/DSP1039_1.0.0.pdf, 2008.

[12] Stephen Dranger, Robert H. Sloan, and Jon A. Solworth. The complexity of

discretionary access control. In Proceedings of the 1st international conference on

Security, IWSEC’06, pages 405–420, Berlin, Heidelberg, 2006. Springer-Verlag.

[13] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-

maswamy Chandramouli. Proposed nist standard for role-based access control.

ACM Trans. Inf. Syst. Secur., 4(3):224–274, August 2001.

[14] D.Richard Kuhn David F. Ferraiolo. Role-based access control (rbac): Features

and motivations. 1995.

[15] Daniel M. German and Ahmed E. Hassan. License integration patterns: Ad-

dressing license mismatches in component-based development. In Proceedings

of the 31st International Conference on Software Engineering, ICSE ’09, pages

188–198, Washington, DC, USA, 2009. IEEE Computer Society.

[16] Jeff Goldman. Barracuda labs warns of openid phishing at-

tacks. http://www.esecurityplanet.com/network-security/

barracuda-labs-warns-of-openid-phishing-attacks.html, 2013.

[17] Internet Engineering Task Force (IETF). Oauth 2.0 threat model and security

considerations. http://tools.ietf.org/html/rfc6819, 2013.

[18] Alan H. Karp, Harry Haury, and Michael H. Davis. From abac to zbac: The evo-

lution of access control models. Technical report, Hewlett-Packard laboratories,

2009.

[19] Barry Leiba. Oauth web authorization protocol. IEEE Internet Computing,

16(1):74–77, 2012.

[20] Herbert Leitold and Evangelos P. Markatos, editors. Communications and Mul-

timedia Security, 10th IFIP TC-6 TC-11 International Conference, CMS 2006,

Heraklion, Crete, Greece, October 19-21, 2006, Proceedings, volume 4237 of Lec-

ture Notes in Computer Science. Springer, 2006.

www.manaraa.com

80

[21] Jin Li, Qian Wang, Cong Wang, and Kui Ren. Enhancing attribute-based en-

cryption with attribute hierarchy. MONET, 16(5):553–561, 2011.

[22] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-

based trust management framework. In Proceedings of the 2002 IEEE Symposium

on Security and Privacy, pages 114–130. IEEE Computer Society Press, May

2002.

[23] Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed creden-

tial chain discovery in trust management (extended abstract). In Proceedings of

the Eighth ACM Conference on Computer and Communications Security, pages

156–165. ACM Press, November 2001.

[24] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor,

S. Jeff Turner, and John F. Farrell. The inevitability of failure: The flawed

assumption of security in modern computing environments. In In Proceedings

of the 21st National Information Systems Security Conference, pages 303–314,

1998.

[25] Uche M. Mbanaso, G. S. Cooper, David W. Chadwick, and Seth Proctor. Privacy

preserving trust authorization framework using xacml. In WOWMOM [2], pages

673–678.

[26] Microsoft MSDN. Authorization. http://msdn.microsoft.com/en-us/

library/ff649821.aspx, 2008.

[27] Microsoft MSDN. Claims based authorization using wif. http://msdn.

microsoft.com/en-us/library/ff649821.aspx, 2011.

[28] Tuan-Anh Nguyen, Linying Su, George Inman, and David W. Chadwick. Flexible

and manageable delegation of authority in rbac. In AINA Workshops (2), pages

453–458, 2007.

[29] OpenGroup. Identity management forum. http://www.opengroup.org/tech/

idm/, 2013.

[30] PlanetLab). Planetlab. http://www.planet-lab.org/, 2013.

[31] ProtoGENI. Distributed identity and authorization mechanisms. http://

groups.geni.net/geni/wiki/ABAC, 2012.

www.manaraa.com

81

[32] Lili Qiu, Yin Zhang, Feng Wang, Mi Kyung, and Han Ratul Mahajan. Trusted

computer system evaluation criteria. In National Computer Security Center,

1985.

[33] David Recordon and Drummond Reed. Openid 2.0: a platform for user-centric

identity management. In Proceedings of the second ACM workshop on Digital

identity management, DIM ’06, pages 11–16, New York, NY, USA, 2006. ACM.

[34] Internet2 Mailing List Service. I2-news: Internet2 releases privacy-

preserving web authorizing software. https://lists.internet2.edu/sympa/

arc/i2-news/2003-07/msg00000.html, 2003.

[35] Shibboleth. Securityadvisories. https://wiki.shibboleth.net/confluence/

display/SHIB2/SecurityAdvisories, 2013.

[36] Microsoft TechNet. Authentication vs. authorization. http://technet.

microsoft.com/en-us/library/cc759647%28v=ws.10%29.aspx, 2005.

[37] William H. Winsborough and Ninghui Li. Protecting sensitive attributes in

automated trust negotiation. In Proceedings of ACM Workshop on Privacy in

the Electronic Society, November 2002. To appear.

[38] Eric Yuan and Jin Tong. Attributed based access control (abac) for web services.

In Proceedings of the IEEE International Conference on Web Services, ICWS ’05,

pages 561–569, Washington, DC, USA, 2005. IEEE Computer Society.

[39] Gansen Zhao, David W. Chadwick, and Sassa Otenko. Obligations for role based

access control. In AINA Workshops (1), pages 424–431, 2007.

